

Student Name

Nicholas W. W. H. (XXX-XXXXXXXXX)

Project Supervisor

XXXXXXXXXX

September 2013

Investigation of Human-Computer Interaction using Algorithmic

Application as a Solution for the Window Management Limitations

Found in Desktop Environments with Windows 7 as an Example

Word Count: 12,928

Product & Development Files: Uploaded as ZIP File

A dissertation submitted in partial fulfilment of the University of Greenwich’s
BSc. (Hons) Computing (3+0) [SJ] Year 3

(i)

Abstract

This dissertation addresses the window management limitations found in Windows 7 in terms of

human-computer interaction, usability and cognitive psychology. Cognitive analysis was

performed using Keystroke-Level Models to study the hierarchy of user interactions, mainly in

hand movements to and from the keyboard as well as hotkey executions with existing window

management software. The project also uses user-centered design methods to analyze and

determine the usability of different window arrangements on computer screens. A usability

experiment was conducted to study the relationship between the complexity of screen layouts

against task effectiveness, efficiency and user satisfaction. Adhering to usability standards and

user-centered evaluation methods, the project goes through an iterative development process on a

working application which maps real-life methods of managing documents into computer-based

interactions aimed to significantly increase multitasking capabilities and efficiencies by reducing

preparation time, number of task iterations per window, as well as completely removing point-

and-click operations.

(ii)

Preface

This dissertation is an original, unpublished work by the author, Nicholas W. W. H., submitted in

partial fulfilment of the University of Greenwich’s BSc. Computing programme. Published

materials, framework or methodology used in the analysis stages of the project are attributed to

Kieras (1993), Nielsen (1994) and Comber & Maltby (1995) while application development

adapted programming concepts, interface elements and source code from De Smet (2006),

Hartikainen (2007), Brooks (2009), Rutland (2010) and Dinham (2011). All requirements

analysis, layout design, interface design, algorithm design, source code development and

evaluation is done independently by the author using the combined methodology aforementioned

with code adaptations from the programmers mentioned.

The idea of investigating human-computer interaction in terms of window management came

from a standard day in the college in the first semester, third year of the degree programme. It

was the class of this subject, XXXXXXXX where the Project Module Leader, XXXXXXXXX

was busy arranging windows on his computer in order to compare 2 windows side-by-side,

which he needs to process and write information on a third window at the same time. It took

some time just to drag the windows to a desired position.

Upon examining this daily computer task, it caused a retrospection on my own daily tasks. I

recall having the same trouble. Not only that, various window management limitations reminded

me of the frustration of not being able to close all windows at once without logging off, setting a

window to be always on top, fit all windows to screen, and so on. This thought leads to even

more questioning of user interface and interaction design in common desktop operating systems

which sparks the interest in the research for this project.

(iii)

Acknowledgement

I would like to take this opportunity to thank my Project Supervisor and Link Tutor,

XXXXXXXXX. Without her past teachings on system development frameworks, continuous

guidance and strong support, completing this project to this standard would be near impossible.

Also, my deepest gratitude to XXXXXXXXX who has lectured for the XXXXXXXX subjects of

the University of Greenwich Computing programme. Her dedication in her teaching has

motivated me to scientifically question and analyze user-centered design methods to be used for

this project. I would also like to thank her, along with other university students for their attentive

participation in the usability experiment of this project, providing extremely helpful input for

further analysis.

Last but not least, I would like to extend my gratitude to my family members, especially my

parents who have always taught me to question everything. Their endless motivation, support,

teachings, reassurance and love played a huge impact on my wellbeing and education today

which enables me to fully carry out this project without any obstacles.

(iv)

Table of Contents

Abstract ... i

Preface .. ii

Acknowledgement .. iii

1.0 Introduction .. 1

2.0 Literature Review .. 2

2.1 Rapid Application Development & MoSCoW Prioritization .. 2

2.2 Usability Standards & Evaluation Methods ... 3

2.3 Hotkeys as an Interaction Method .. 4

2.4 Screen Layout Design & Complexity .. 5

2.5 Windows API ... 6

3.0 Window Management Limitations in Windows 7... 7

4.0 Review of Existing Applications ... 9

4.1 Chameleon Window Manager .. 9

4.1.1 Appearance ... 10

4.1.2 Usability .. 11

4.1.3 Utility .. 11

4.2 WindowSpace... 12

4.2.1 Appearance ... 12

4.2.2 Usability .. 13

4.2.3 Utility .. 14

4.3 Actual Window Manager ... 14

4.3.1 Appearance ... 15

4.3.2 Usability .. 16

4.3.3 Utility .. 16

4.4 Key Issues to Use in Design & Implementation .. 17

5.0 Requirements Analysis .. 18

5.1 Questionnaire Survey ... 18

5.2 High Level Requirements with MoSCoW Prioritization ... 21

(v)

5.3 Minimum System Requirements .. 22

5.3.1 Software Requirements ... 22

5.3.2 Hardware Requirements.. 22

5.4 Use Case Diagram .. 23

6.0 Design .. 24

6.1 Class Diagram .. 24

6.2 Interface Design ... 25

6.3 Screen Layout Designs ... 26

6.3.1 The 50% + 23:77 Layout .. 26

6.3.2 Conformed Golden Spiral Layout ... 27

6.3.3 Grid Layout ... 28

6.3.4 Unaligned Layout.. 29

6.4 Algorithm Design ... 30

7.0 Development ... 31

8.0 Evaluation ... 35

8.1 Usability Experiment.. 35

8.1.1 Test System Specification ... 35

8.1.2 Procedure .. 35

8.1.3 Results ... 36

8.1.4 Discussion ... 40

8.1.5 Conclusion .. 40

8.2 White-Box Testing ... 41

8.2.1 Bugs Found & Fixed ... 41

8.2.2 Unfixed Bugs .. 41

8.3 Heuristics and Keystroke-Level Model.. 42

8.4 Limitations of the Current System ... 44

9.0 Conclusion .. 45

10.0 Bibliography ... 46

Appendix A – Chameleon Window Manager Heuristics & KLM ... 50

Appendix B – WindowSpace Heuristics & KLM... 52

(vi)

Appendix C – Actual Window Manager Heuristics & KLM ... 54

Appendix D – Questionnaire Results: Managing Documents and Windows 56

Appendix E – Usability Experiment Data .. 66

Appendix F – White-Box Test Plan ... 68

Appendix G – Project Proposal ... 72

1.0 Project Overview .. 72

2.0 Aim ... 73

3.0 Objectives ... 73

3.1 Key Research Areas .. 73

3.2 Development ... 74

4.0 Functional Requirements.. 75

4.1 Primary Functions... 75

4.2 Secondary Functions... 75

5.0 Non-Functional Requirements ... 75

5.1 Readability .. 75

5.2 Accessibility ... 75

6.0 Legal, Social, Ethical and Professional Concerns .. 76

7.0 Planning (see appendix A) ... 76

8.0 Initial References.. 76

9.0 Proposal Appendix – RAD Model with Timebox Plan.. 77

Appendix H – Developed Application Screenshots .. 78

Appendix I – Developed Application Source Code .. 81

Hotkey.cs Class ... 81

Window.cs Class ... 82

Category.cs Class .. 83

DataHandler.cs Class .. 86

Form1.cs (Main Controller) Class .. 93

Form2.cs (Settings) Class ... 127

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 1

1.0 Introduction

In the world today, almost all personal computers have a desktop environment which provide a

graphical user interface consisting of windows, toolbars and icons which maps the real-life office

environment to a virtual interface for users to effortlessly access and edit files. This interface is

crucial for daily computer usage for both beginners and experts as it enhances human-computer

interaction (HCI) which greatly reduces the time taken to perform tasks and increases usability to

allow any user in the world to easily learn and make use of the computer. Thus, this project was

started to address windows management limitations and issues in order to improve users’ control

over windows for efficient multitasking as well as to provide a solution for reducing clutter on

the screen, especially for monitors with small resolutions.

This report presents the full documentation of the research regarding HCI issues in terms of

limitations in windows management, hotkey functionality and screen layouts in desktop

environments, and also the development process of a standalone windows management

background application as a solution for the limitations in the Windows 7 desktop environment,

Aero. The developed application uses Visual C# with the implementation of the Win32 API,

more specifically user32.dll, which is a dynamic-link library for the creation and manipulation of

elements in the Windows user interface.

The project is managed using Rapid Application Development methodology to gather the

requirements dynamically while highly focused on evolutionary prototyping and testing due to

high user involvement when creating algorithms for windows and screen layouts. Each project

phase is timeboxed to a specific deadline and controlled using MoSCoW prioritization to ensure

all deliverables are completed.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 2

2.0 Literature Review

2.1 Rapid Application Development & MoSCoW Prioritization

Rapid Application Development (RAD) is a software development approach which uses minimal

planning in favor of rapid prototyping. This methodology was chosen for the project due to its

user-centered methods and speed (Kerr & Hunter, 1994) to overcome time constraints due to

other responsibilities and risks faced in the degree programme of this project. RAD sets up the

project in four phases: the requirements planning phase which determines project scope,

constraints and system requirements, user design phase which develops diagrams and models

discussed in a user-centered approach, construction phase for rigorous programming and testing,

and finally the cutover phase for complete integration and documentation. A model of this can be

seen at the end of the Project Proposal in Appendix G. The project report uses terms such as

“iterative development” which refers to the 2nd and 3rd phases of the RAD methodology used.

RAD makes use of timeboxes to ensure all tasks are completed within time; otherwise they are

dropped based on the Must, Should, Could, Won’t (MoSCoW) priority. MoScoW quantifies

tasks into four groups of priority as discussed by Hatton (2008), Tudor and Walter (2006) where

tasks with “MUST” priority are decisive tasks for a project’s completion, “SHOULD” for tasks

which are nice to include in a project, “COULD” for less important tasks and “WON’T” for

future implementations. Studies and comparisons made with other prioritization methods found

that MoSCoW is extremely easy to use, consistent and takes less time to perform while providing

high user confidence (Ma, 2009). These software development methods were used to ensure

smooth management and progression of the project and may be referred to throughout this report.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 3

2.2 Usability Standards & Evaluation Methods

One of the earliest frameworks for usability design and evaluation was analyzed by Shackel

(1991) who used an operational approach by defining usability as the system’s capability in

human functional terms. The essence of the operational approach is that it explicitly defines

usability through human-computer interaction more on system functionality and user satisfaction.

The framework outlined by Shackel specifies 3 usability criteria – utility, usability and likeability

which depends on its context of use, to measure usability. These criteria and methods were also

adapted and further revised under the International Organization for Standardization (ISO).

For human-computer interaction and user interface design of all software, ISO helps determine

the definition of usability for users all over the world regardless of culture. Adhering to these

standards allow for the satisfaction of requirements of users all over the world, crucial for

organizations aiming for international business. The concept of usability is defined of the ISO

9241 standard by effectiveness, efficiency, and satisfaction of the user. Part 11 gives the

following definition of usability:

 Usability is measured by the extent to which the intended goals of use of the overall

system are achieved (effectiveness).

 The resources that have to be expended to achieve the intended goals (efficiency).

 The extent to which the user finds the overall system acceptable (satisfaction).

Apart from standards, usability experts performed extensive research into quantifying subjective

aspects of user interaction through studies of human cognitive psychology such as through the

Goals, Operators, Methods and Selection (GOMS) analysis first developed by Card et al (1983).

Goals are results which users desire to achieve. Operators are the list of tasks needed to achieve

the Goal while Methods are a group of Operators used for a single Goal. Finally, Selection are

conditional paths which determine which Method to use. Kieras (1993) further developed the

GOMS method to introduce Keystroke-Level Model, breaking down user interactions into direct

tasks applied to the keyboard and mouse designed for short tasks, suitable for this project. Along

with these guidelines, Nielsen (1995) has defined 10 usability heuristics based on a factor

analysis of 249 usability problems. These heuristics will be used for the usability evaluation of

existing applications, as well as the developed application of this project.

http://en.wikipedia.org/wiki/ISO_9241
http://en.wikipedia.org/wiki/ISO_9241

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 4

2.3 Hotkeys as an Interaction Method

Hotkeys are keyboard shortcuts in which a keystroke (single-key) or a combination of keys

(chorded) are pressed on the keyboard to perform a task or function that would otherwise be

normally accessed or performed with the mouse. Hotkeys are used in place of mouse clicks

because some frequently used controls can be hard to access on the screen due to factors such as

size, distance, clutter and complexity of the task. For example, the window docking function in

Windows 7 which allows users to automatically move a window to the left and resizing it to fit

half of the screen, can be performed almost instantaneously with the key combination,

“Windows Button + Left Arrow Key.” This function is otherwise performed with the mouse by

simply dragging the window to the edge of the screen and wait for the “snap” animation.

In terms of human cognition, a study on Apple’s human interface (Tognazzini, 1989) has found

that accessing controls with the mouse is faster than the keyboard because the act of recalling

keyboard shortcuts correctly, due to the large amount of possible functions, require a higher

order of cognitive skill than merely searching for a graphical widget with a mouse. Users who

are new or still learning to apply the keyboard shortcuts actually spend more time in doing so,

but subjectively reported that hotkeys were faster in their opinion. This perceived increase in

efficiency suggests that the inclusion of hotkeys may increase user satisfaction in an application.

Besides that, Tognazzini’s study has also pointed out that users can better “remember

disconnected data when they are the source for that data,” so adding customizable hotkeys can

help users remember them better. For expert users, a study of keyboard shortcuts using Microsoft

Word (Lane, Napier, Peres, & Sandor, 2004) demonstrates hotkeys to be the most efficient

method of interaction in terms of time. The study shows that one would have to issue at least 450

commands to save 15 minutes per day, which although is not much for an individual, it can be

significant for an organization. The problem with hotkeys thus lies on its learning process and

the willingness of the user to apply them. A study finds that non-keyboard shortcut users are

most motivated to use hotkeys when there is someone to train them and least motivated if they

simply knew that it would save time (Peres and Tamborello II et al., 2004).

As such, the project must look into the mouse as one of the main interactions for the developed

system, with the inclusion of a separate control panel and easy instructions to help users learn the

hotkeys and its functions. Implemented hotkeys must also be customizable and consistent with

the existing hotkeys in Windows 7 without any conflicts.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 5

2.4 Screen Layout Design & Complexity

A screen layout is the arrangement and presentation of windows, toolbars and other graphical

elements on the screen. In a desktop environment, the screen displays windows in a given

resolution space with a limited number of pixels. Due to the various sizes of monitors in the

market, users all over the world have varying screen resolutions which will affect the amount of

space available for display as well as the usability of the interface.

In order to measure the usability of a particular screen layout, Bonsiepe (1968) proposed a layout

complexity metric based on the horizontal and vertical alignment of objects and their positional

alignment, which is used to determine the relative order and disorder of objects. Thus, windows

in a grid layout with consistent alignment and size are of minimum complexity, whereas

unaligned and scattered windows with different sizes are of maximum complexity. In another

research, the measurement of layout complexity was applied to alphanumeric displays on

computer terminals and its results suggest that the lower the layout complexity, the higher the

usability (Tullis, 1983). Another study finds that the optimal usability is found in the middle

between the two extremes of layout complexity as users not only performed more efficiently and

effectively with a layout of decent complexity, they are also more satisfied with it in terms of

aesthetics. An explanation provided for this is that “a screen with minimal complexity is boring

to look at and has difficulties in using size and position cues to indicate the function of objects.

On the other hand, a screen with maximum complexity is also not desirable as it can be visually

confusing and less productive to use” (Comber & Maltby, 1995).

The problem that needs to be addressed in the research area of this project is the type of layout to

use when automatically rearranging windows. In terms of proportions, the Golden Ratio, also

known as Golden Section, is a well-known mathematical relationship from ancient Greek,

proposed to be aesthetically pleasing due to its frequent appearance in geometry and was

explicitly used by some twentieth-century artists and architects such as Dali and Le Corbusier in

their design models. However, some studies have suggested that the Golden Section has no

aesthetic significance (Boselie 1997; Davis & Jahnke 1991). A more specific test on information

retrieval with the computer using the Golden Section as a screen ratio resulted in poor task

performance in terms of time taken, accuracy and aesthetic value; it was the least preferred

screen ratio of all among the test participants as results indicate that “the best ratio is 28:72 for

aesthetic value and 23:77 for performance” and recommends that the 23:77 ratio be used due to

the lesser impact of aesthetic measures (van Schaik & Ling, 2003).

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 6

2.5 Windows API

An API is an application programming interface which provide a means of interaction among

software components, usually through different platforms or hardware specifications. The

Windows API specifically refers to a number of different platform implementations such as

Win16, Win32 and Win64. Almost all Windows programs interact with the Windows API. The

number prefixed to the back of the API name such as Win32, indicates its compatibility with 32-

bit systems. The Win32 API is designed for modern computers which use 32-bit operating

systems and therefore is the selected API for the project. Win32 API is used in Windows 7 to

provide access to resources such as processes, file systems and devices, kernel operations,

functionality for graphical output, user interface, graphical controls, access to the operating

system shell and networking capabilities. Thus, in order to manipulate windows, the developed

application requires a method of interaction with the Win32 API.

The Win32 API is implemented in the C programming language which is not object-oriented. It

also comes in the form of dynamic-link libraries which enables the sharing of data and

functionality. However, these libraries are in machine code and require an interface to interact

with. Functions within the Win32 API lack available wrappers. Wrappers are a thin layer of code

which translates the interface. Without it, the native code does not have a compatible interface

for high-level programming languages to work with, and runtime interoperability cannot be

achieved. Using Microsoft technologies ensures easier integration. Therefore, Microsoft Visual

C# was selected for easy creation and manipulation with Windows Forms as well as the .NET

Framework for easy access and integration with the Win32 API. The .NET Framework contains

ready-made wrappers which exposes the Win32 API to be used with high-level object-oriented

programming. Research shows that the implementation of .NET technologies for exposing the

Windows API as managed code allows easy and rapid development of functional programs than

in any other implementation (Benton, Kennedy and Russo, 2004) in the Windows operating

system.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 7

3.0 Window Management Limitations in Windows 7

Windows 7 offers various window management functionality for managing multiple windows

efficiently on computer screens. Windows 7 introduces the Aero desktop environment with

various technologies such as Aero Snap to automatically stretch windows to fill in screen space

and Aero Peek to set all windows to transparent in order for users to look at the desktop. In order

to identify the limitations of window management, the full capabilities of Windows 7 must be

listed and examined one-by-one. All windows management functionality was compiled from the

Microsoft Windows (2013) website and was tabulated below.

Hotkey Function

Win + Up Maximize window.

Win + Down Restore or minimize window.

Alt + F4 Close window.

Win + Left Dock to left half of the screen.

Win + Right Dock to right half of the screen.

Win + Shift + Up
Stretch the window to fill the top and bottom

of the screen.

Win + Shift + Left Move to left monitor.

Win + Shift + Right Move to right monitor.

Win + Home
Restore or minimize all windows except the

currently active window.

Win + T
Cycle between pinned windows on the taskbar,

starting from the first.

Win + Shift + T
Cycle pinned windows in the taskbar

backwards.

Win + Space Preview the desktop.

Win + D Shows the desktop.

Win + M Minimizes all windows.

Win + Shift + M Restore all minimized windows.

Win + Tab Flips through windows in a 3D interface.

Table 3.0: Hotkey Functionality for Windows Manipulation in Windows 7

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 8

Standard window operations such as minimizing and maximizing windows were assigned

hotkeys as seen in Table 3.0, but not for moving or resizing of windows. Window minimize and

restore operations were not only designed for a single window, but also for all windows on the

screen. Yet, there is no close operation for all windows with the exception of logging off or

shutting down the computer. Thus, these standard window operations which were omitted in

Windows 7 have to be iterated and tediously executed for each window, whereas the minimize

and restore operations can be carried out for all windows at once. The reason for this omission is

incomprehensible.

Windows 7 also offers a docking system which allows users to expand windows to fill in the left

or right half of the screen, maximizing the use of screen space. For the docking functionality

accessed through hotkeys, it only docks a maximum of 2 windows on either side of the screen.

Any other windows which are docked will overlap the previously docked window. It is peculiar

because Windows 7 also offers automatic stacking, tiling and cascading functions to arrange

windows on screen (Microsoft Windows, 2013). This can be done by right-clicking the taskbar

and selecting the arrangement option. For example, selecting the stacking option when 4

windows are opened automatically arranges them into a grid, positioned at each corner of the

screen and equally sized, making maximum use of space. However, this could not be achieved

with hotkey docking because the windows do not automatically resize and arrange themselves

when new windows come in. This lack of run-time automatic rearrangement makes window

manipulation rigid in terms of defining customized layouts. If the hotkey docking functionality

arranges and resizes windows as new windows come in, users can put in as many windows as

desired in different sections of the screen without delay, which is one of the main focus of this

project apart from the investigation of predefined screen layout complexity over usability aspects.

Besides that, Windows 7 does not seem to provide space management solutions. Windows are

not provided controls to be hidden from the desktop to reduce clutter on the screen and in the

taskbar. As users open more windows, the taskbar fills up with various icons to the point where it

becomes difficult to switch between windows. A method must be developed to properly manage

the number of windows in regards to computer screen space. Window manipulation in terms of

space management is a subject that deserves deeper research and analysis, as this project would

delve into. All in all, Windows 7 does provide some excellent solutions for window management

with the use of its Aero desktop technology. However, the limitations aforementioned in this

section must be addressed.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 9

4.0 Review of Existing Applications

The limitations and lack of window manipulation controls in Windows 7 are not particularly

unnoticed by its users which has led to the development of third-party window management tools

and utilities for more functionality. Three latest applications on the market were chosen to be

evaluated, which are Chameleon Window Manager, WindowSpace and Actual Window Manager

in terms of appearance by comparing interface aesthetics and complexity, usability through

heuristic tests, and utility using Keystroke-Level Model – Goals, Operators, Methods &

Selection (KLM-GOMS or KLM in short) for a cognitive analysis based on the hierarchy of

interactions and time taken in performing tasks. The KLM-GOMS approach was chosen due to

its simplicity as it is designed to break down simple tasks which take no longer than 5 minutes. It

also allows for a quick analysis without the need for usability experts (Kieras, 1993). The KLM

is done for a simple task of arranging 3 different windows, 1 window at the left half of the screen

with full screen height while the other 2 at the right half of the screen, equally divided in height.

After the KLM analysis is done to acquire a time estimation, a trial run is performed with a

stopwatch to record the actual time taken in order to reflect on the accuracy of the KLM

estimation. A comparison will be made to analyze the effect of different levels, types and

numbers of operations on task efficiency.

4.1 Chameleon Window Manager

Chameleon Window Manager is a window manager software by NeoSoft Tools (2013) which

allows users to customize the behavior of all windows and add buttons with additional functions

to the window title bars. It does not make use of hotkeys, but includes additional controls on

every window. It can perform the following functions:

 Reposition and resize windows using a predefined layout or by drawing.

 Move window to next monitor.

 Set transparency of window.

 Minimize window to tray.

 Minimize window to caption (title bar).

 Save window state (size, position, transparency, etc.)

 Apply a rule on size, position, etc. to all windows or windows with a specific name.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 10

4.1.1 Appearance

Its layout appears to be inconsistent by having its own custom grey frame, its controls docked at

the various sides of the window (see Figure 4.1.1a) with a lack of proper spacing. Reaching

controls require frequent travelling of the cursor from one side to the other with great distance as

well as precision to actually select the control which costs time. There are lack of icons used to

indicate the functions that it can perform, aside from window icons and a few controls. This

further costs unnecessary time taken to read and understand the program whereas a simple button

or visualization could have portrayed its meaning faster. Due to its lack of hotkey functionality,

many buttons were added onto the title bar of each window, causing clutter (see Figure 4.1.1b).

Figure 4.1.1a: Chameleon Window Manager Inconsistent Layout

Figure 4.1.1b: Chameleon Window Manager Cluttered Title Bar

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 11

4.1.2 Usability

Chameleon Window Manager provides customization of all its features, including the adding and

removing of buttons in each window, defining layouts as well as creating and loading

configurations to be applied to each specific window. It is also highly compatible with many

versions of Windows from Windows XP to Windows 8.1. A usability heuristics test was

performed and can be seen in Appendix A, Table A1 of this report, satisfying 4 out of 10 usability

guidelines and found that Chameleon Window Manager makes use of technical terms when

listing windows in its interface, confusingly portraying windows as processes with window

classes and IDs without explanations for its technical information. Some functions do not work

as expected; for example, some settings do not apply to certain windows and its cluttered

controls on the title bar blocks controls from other windows which makes use of that space (an

example of this can be seen later with Actual Window Manager). Although the user is able to

define their own layouts, most of the configurability of other functions are minimal. Its usability

problems mostly arise from its interface design, described as “cluttered and confusing” in a

review article on PCWorld besides having inconsistent performance and bugs (Lancet, 2013).

4.1.3 Utility

According to the KLM analysis performed on Chameleon Window Manager (see Appendix A,

Table A2), it can be seen that its functionality is achieved through point-and-click interactions

using only the mouse. The KLM estimated time to achieve the goal of arranging 1 window to the

left half of the screen with full height and 2 windows to the right half with equally divided

heights is 12.4 seconds, followed by a trial run achieving an actual time of 9.69s. Although it has

been noted in the literature review that mouse interactions require a lower cognitive skill than

remembering hotkey combinations, the Chameleon Window Manager uses small buttons and

implements 2 layers of point-and-click navigation in order to select the desired layout for a

window. Thus, the delay is mostly caused by the number of operations required to achieve the

goal, twice as many compared to WindowSpace. During the trial run, these operations are also

observed to require an amount of control and accuracy in using the mouse to select the desired

items due to its small buttons. Due to these factors, mouse interaction is slower than hotkeys in

this context. Users with poor mouse control are thought to perform poorly with the Chameleon

Window Manager.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 12

4.2 WindowSpace

WindowSpace is a lightweight desktop enhancement utility by NTWind Software (2013) for

large monitors, widescreens and multi-monitor systems. It claims to provide window snapping

features better than Aero Snap feature in Windows 7/8 and uses a variety of shortcuts including

hotkeys and mouse key alternatives to existing buttons; for example, right-clicking on a

window’s Minimize button will send it to tray. It can perform the following functions:

 Move and resize windows with hotkeys.

 Snap windows to screen edges and other windows.

 Minimize window to tray.

 Hide a window.

 Automatic arrangement of windows, either by cascading or tiling.

 Close all windows at once.

4.2.1 Appearance

WindowSpace does not have its own interface except for a configuration window with checkbox

and selection controls (see Figure 4.2.1b). It embeds its controls into windows and uses mainly

hotkeys to perform its functionality. WindowSpace can auto-arrange windows using several pre-

defined screen layouts such as the cascading layout and tiled layout (see Figure 4.2.1a below)

with a limited number of windows to maintain readability. If the number of windows exceed the

layout’s expected number of windows, it will not arrange the remaining windows.

Figure 4.2.1a: Automatically Cascade or Tile Windows

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 13

Figure 4.2.1b: Settings Window

4.2.2 Usability

WindowSpace provides a solution to most of the windows management limitations with highly

customizable hotkeys and user preferences along with a simple and clean interface. Each feature

can be turned on and off using checkboxes as the user see fit. With its straight-forward

functionality, WindowSpace does its job extremely well with the pure use of hotkeys. It snaps

onto windows and docks effectively. Nevertheless, some of the descriptions have technical terms

which are not entirely clear to the average user and some terms are not even explained such as

“MDI parent.” The tile windows functionality only supports up to 3 windows. WindowSpace

addresses window manipulation limitations only and serve to add those functions without much

thought into the limitations of space. It is specifically created to suit large screens and does not

automate or help in the arrangement or management of windows to increase space. Overall,

WindowSpace is simple, efficient and very customizable for manipulating windows which

almost passed the Nielsen’s heuristics checklist (see Appendix B, Table B1) with 8 out of 10 of

the guidelines followed.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 14

4.2.3 Utility

The KLM analysis on WindowSpace (see Appendix B, Table B2) reveals that it has a lower

number of operations required to achieve the goal compared to the others. Within these

operations, the number of hand movement operations from keyboard to mouse and vice versa is

double than that of other operations. This is caused by the distance between keys in the hotkey

combination which requires both hands to be on the keyboard in order to execute. The main

motivation in designing hotkeys which are harder to reach is to prevent users from performing an

error-prone or irreversible task. Using hard-to-reach hotkeys by default for arranging windows –

a task which is essentially the program’s main purpose, causes unnecessary delay. Nevertheless,

WindowSpace minimizes the amount of operations and selection methods which costs an

estimated time of 7.8 seconds, and performed excellently at only 5.6 seconds in an actual trial

run.

4.3 Actual Window Manager

Actual Window Manager was developed by Actual Tools (2013) to address limitations in

window manipulation as well as desktop space through the use of virtual desktops and desktop

profiles. It allows almost every possible action to be done with windows and offers plenty of user

customization within those actions. However, it does not have automatic arrangement functions.

The following are some of the functions it can perform:

 Configure each window individually in terms of startup position, priority, etc.

 Create and manipulate unlimited number of virtual desktops.

 Snap windows to screen edges and other windows.

 Minimize window to tray.

 Hide a window.

 Move and resize windows with hotkeys.

 Reposition and resize windows using a predefined layouts and sizes.

 Move window to next monitor.

 Set transparency of window.

 Minimize window to tray.

 Minimize window to caption (title bar).

 Save window state (size, position, transparency, etc.)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 15

4.3.1 Appearance

Its interface is overwhelmed with information with descriptions on the functions of each

component (see Figure 4.3.1a). The interface makes use of meaningful icons to describe

functions and attributes of the system following consistent design patterns with labelled icons,

proper spacing, as well as a top-to-bottom and left-to-right layout arrangement. It also embeds

controls into windows without causing too much clutter as compared to the Chameleon Window

Manager, but still causes an overlap with windows which make use of the window title bar space

such as in the Google Chrome example in Figure 4.3.1b.

Figure 4.3.1a: Information Overload but with Clean and Consistent Layout

Figure 4.3.1b: Overlapping Controls

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 16

4.3.2 Usability

The Actual Window Manager has a large collection of functions which accurately addresses

various limitations of window manipulation and desktop space. In the heuristics test (see

Appendix C, Table C1), its high compatibility with most version of the Windows operating

system (from Windows XP to Windows 8.1) highly contributes to its usability and accessibility.

All of the function hotkeys can be customized and new hotkeys can be added to perform

functions based on user-defined values. However, the problem is with its interface and

interaction. Window managers are supposed to improve usability in performing window tasks

but this interface is hard to use and has a steep learning curve. Although the Actual Window

Manager makes use of both hotkeys and mouse buttons to perform a huge variety of functions,

they do not automate the tasks for the users. Users have to define sizes and positions for layouts

or stick to the predefined values which do not automatically correspond to different screen sizes.

Moreover, user-defined values for position and size are not assigned to hotkeys – meaning that

any functions conforming to user-defined values must be manually configured or otherwise

accessed with the mouse using a combination of right-clicks and left-clicks, costing unnecessary

time. Some functions require 4-key combination hotkeys by default which are hard to remember

and execute, yet reconfiguring them one-by-one also requires time and effort.

4.3.3 Utility

Based on the KLM analysis (see Appendix C, Table C2) for Actual Window Manager, the

hierarchy of tasks in which the user has to perform is similar to WindowSpace but requires more

steps to achieve the desired result. The reason is that in order to rearrange windows on the screen,

a window has to be both repositioned and resized. These two tasks were combined in

WindowSpace and Chameleon Window Manager, but not in Actual Window Manager.

Therefore, an execution of two different hotkey combinations were required in order to fully

rearrange a window. An added note is that the resize functions are fixed to a defined size; in this

case, two types of resize operations are needed – one for the left side fully occupying the screen

height and one for the equally divided heights of the right side. Cognitively, users also have to go

through three mental preparations to recall and organize their actions to perform three different

types of keystroke combinations. This slows down the user from achieving their goal and

increases estimated time taken by 3 seconds to a total of 10.8 seconds compared to

WindowSpace which similarly performs tasks using hotkeys. The trial run for Actual Window

Manager was completed in 8 seconds time.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 17

4.4 Key Issues to Use in Design & Implementation

 Chameleon

Window Manager
WindowSpace

Actual Window

Manager

Estimated Time (s) 12.40 7.80 10.80

Actual Time (s) 9.69 5.60 8.00

Heuristics Check 4 / 10 8 / 10 6 / 10

Number of Operations

Mental Preparation 1 1 3

Hand Movement 1 6 6

Mouse Click 9 3 3

Pointing Mouse to Object 9 3 3

Key Press & Release 0 3 6

TOTAL: 20 16 21

Table 4.4: Comparison between 3 Existing Software

Table 4.4 above shows that WindowSpace performs the best in terms of appearance, usability

and utility compared to the others. Its minimalistic design is easy to use and can be used as an

example for this project. Also, it is most similar to the system developed in this project in terms

of functionality compared to others due to its automatic arrangement of windows and its usage of

hotkeys to address the windows management limitations in Windows 7. The only thing it lacks is

more automatic functions and an actual interface. It also solely concentrates on using keyboard

hotkeys as the only means of interaction which decreases flexibility for beginner users.

Comparing all three existing software in terms of task efficiency, WindowSpace performed the

fastest due to its simpler keystroke model with hotkeys, followed by Actual Window Manager

and Chameleon Window Manager. Based on a detailed view obtained from the usability

heuristics check and KLM-GOMS analysis, it is seen that the hand movement from mouse to

keyboard and vice versa, as well as the distance between hotkeys negatively impacts task

efficiency. Thus, implementing default hotkeys which can be performed using only one hand is

imperative for frequent tasks. Using mouse as the only means of interaction not only increases

time taken in performing tasks due to the difficulty in acquiring small widgets on a large screen,

but also takes away flexibility for expert users to perform faster. Overall, the system must

implement a balance of easy-to-reach hotkeys for frequent tasks such as rearranging windows,

hard-to-reach hotkeys for irreversible tasks such as closing all windows and lastly, an interface

of buttons to support mouse interaction for beginner users.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 18

5.0 Requirements Analysis

5.1 Questionnaire Survey

Due to the inconclusive studies and vague nature of user preferences, a questionnaire was created

using SurveyMonkey to investigate user preferences on screen layouts at home and office

environments as well as to determine the focus of the system based on the preferred methods in

managing documents. The questionnaire was asked to home and office users situated in Malaysia

and Singapore, with ages ranging from 16 to 42, some of which are laptop users. Question 1-3

are about the managing of documents in real-life, in which its responses can be mapped to

computer interactions to initially determine the preferred method of organizing windows on

screen, method of tracking important windows and position of controls. Question 4-10 are more

specifically for computers to investigate the usage of hotkeys, windows and general preference in

window properties. A total of 54 respondents participated in the survey and the results can be

found in Appendix D of this report.

40.74% of the respondents prefer to stack their often accessed documents and put them aside as a

method of organizing their desk in real-life, followed by 25.93% of respondents who prefer to

store them somewhere else such as in a file or cabinet. As for keeping track of important

documents, 64.81% of users prefer to store them in a labelled file, followed by 16.67% of users

who prefer to label individual documents as important. This large difference in the preferred

method of managing documents suggests that users tend to group up documents by category and

hide their documents out of sight to avoid clutter on their desk. By mapping this behaviour into

computer interactions, users should be allowed to group windows by category as a tracking

method to bring up or hide away windows based on their determined importance by the user.

When asked of their preferred position of desk stationery, the most used position is top-right with

38.89% responses, followed by top-left with 29.63%, while the least used position is at the

bottom and bottom-right with both having only 1.85% of the responses. As with most window

controls, they are positioned at the top-right. Thus, the interface should be consistent and meet

these expectations when positioning its controls as well.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 19

Users tend to use hotkeys in their daily tasks. The questionnaire divides the usage of hotkeys into

four ratings in which users can choose to determine how often they use them, with the rating of 1

being “Very Seldom,” and 4 being “Very Often.” 59.26% of the users respond with a rating of 3,

and the average response of all users combined also resulted in the value of 3, which is “Often.”

This determines the emphasis and configurability of hotkeys on the system based on usage.

59.26% of users find the drag-and-drop feature to be easy to use given the current window

management features with comments such as “just a click away” and “user-friendly”, while the

other 40.74% of users find it hard and tedious to use with comments such as “hotkeys are

preferred,” “too many windows opened” and difficulty in dragging to the correct position. The

fact that most users found it easy to drag-and-drop content suggests that the current windows

alignment and snapping functionality works well enough that it does not need further

improvement. Users who disagree however, commented for further support on the need for

managing desktop space based on the number of opened windows as well as hotkey interactions.

Furthermore, users prefer to see visualizations of the original window when storing or

manipulating simplified objects which represent the window with a majority percentage of

38.89%. Simplified objects are used to save space and allow for greater manipulation and

presentation within the system interface. However, this majority percentage for window

snapshots is closely rivaled by floating bubble icons with the support of 35.19% of the users,

followed by 22.22% of users for text labels. Although the highest priority will be put into

generating window snapshots, the significant amount of support by other users also indicate that

a combination of icons and text would be a suitable approach to address almost all of the users’

needs. These icon and text attributes are considered to be added into the system at a later stage

with a lower priority, and is added into the MoSCoW prioritization list.

Lastly, the general focus of the system is determined as majority of the users find window

animation to be important (68.52%), work with a maximum of 6 to 10 windows on the screen at

once (50%), prefer landscape windows over portrait or square (75.93%), and most comfortable

working with a window size which covers at least half of the screen (24.07%). Based on all of

the collected statistics, Table 5.1 on the next page lists the attributes and some of the non-

functional requirements in which the system should have.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 20

Position of Controls Top-Right of Screen

Hotkey Functionality High

Method of Organizing Windows Group by Category

Method of Determining Important Windows Group by Category

Improvement of Window Snapping Functionality Not Necessary

Importance of Animation High

Number of Windows on Screen 6 – 10

Window Orientation Landscape

Minimum Size of Main Window 50%

Simplified Windows Form Window snapshots.

Table 5.1: Attributes & Non-Functional Requirements of the System

Based on the information incurred from the analysis, the minimum window size that users prefer

working with covers 50% of the screen. In order to account for readability, the number of

windows must be limited. Hypothetically, given the remaining screen width = 1, ratio sizes of

23/77 can only fit in 3 more windows, giving a total limit of 4 windows. Due to this problem, a

proposed solution would be to have a control value, known as “Layout Limit” which groups

windows into a separate category if the number of windows exceed the limit of the screen layout.

The algorithm will automatically create new categories if the current category has exceeded its

limit. By grouping windows together, users can add or remove windows from groups in addition

to showing or hiding all windows from a specific group. This strategy is in coherence with user

preferred methods in managing documents.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 21

5.2 High Level Requirements with MoSCoW Prioritization

The tasks in Table 5.2 below are for the high level requirements of the system prioritized based

on the MoSCoW method. There are only two development iterations in this entire project. All

tasks under the “MUST” priority are scheduled to be completed within the first iteration whereas

tasks under the “SHOULD” priority are scheduled to be completed by the second iteration. Any

extra time remaining is spent on tasks with “COULD” priority. Tasks with “WON’T” priority

are taken into consideration for current tasks to prepare the system for its future implementation.

Task Priority Comment

Toggle automatic window docking MUST Required for primary function.

Dock windows on screen MUST Primary function for multitasking efficiency.

Rearrange all windows MUST Primary function to allow multitasking.

Add window into group MUST Grouping windows solves limitations.

Rearrange windows of a group MUST Enables multitasking by group.

Hide windows of group MUST Solves the screen space problem.

Show windows of group MUST Solves the screen space problem.

Show overlay of windows and

controls

MUST Provides an interface for beginner users to

interact with the program.

List windows by group MUST Required for user to interact with groups.

Delete window group MUST Required to remove unwanted groups.

Make active window the main

window of the group

MUST Significantly improves multitasking.

Swap active window position with

main window

SHOULD Improves window manipulation in terms of

multitasking capabilities.

Move active window SHOULD Improves window manipulation.

Resize active window SHOULD Improves window manipulation.

Close windows by group SHOULD Increases window manipulation efficiency.

Close all windows SHOULD Increases window manipulation efficiency.

Kill windows by group SHOULD Increases window manipulation efficiency.

Kill all windows SHOULD Increases window manipulation efficiency.

Rename window group COULD For user customization purpose only.

Start application at startup COULD Not important, for user convenience only.

Reconfigure hotkeys COULD For user customization purpose only.

Animation of window movements WON’T Does not benefit users or program except for

user satisfaction. Implement in future.

Extra functions for compatibility WON’T Current project scope is for Windows 7 only.

Table 5.2: Task Priority List

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 22

Based on the initial Rapid Application Development Model with Timebox Plan from the Project

Proposal (see Appendix G), the scheduled date for the first development iteration is from 10th of

November 2013 to 10th of January 2014 which is a period of 2 months. Within these two months,

tasks with the “MUST” priority must be completed, otherwise they are carried over to the second

development iteration which is from 11th of January 2014 to 10th of March 2014, another period

of two months. The “SHOULD” tasks however, are supposed to be dropped if they are unable to

be completed within the second iteration. This ensures all top priority tasks are completed in

order to satisfy the primary requirements and scope of this project.

5.3 Minimum System Requirements

The literature review and analysis helped determine the technologies to be used in the system.

These technologies require that users have the following software and hardware components for

the system to work, assuming all Windows 7’s minimum requirements are already met:

5.3.1 Software Requirements

 .NET Framework 4.0 or above

 Windows 7 (32-bit)

5.3.2 Hardware Requirements

 500KB HDD Space

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 23

5.4 Use Case Diagram

Close Windows

Kill Window Processes

Rearrange Windows

Make Main Window

Move Active Window

Add Window to Group

Resize Active Window

Window

Remove Window from Group

User

Swap Main Window

<<extends>>

<<extends>>

Hide Windows

Show Windows

Show Overlay

Rename Group

Delete Group

<<includes>>

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 24

6.0 Design

6.1 Class Diagram

Controller

-CATEGORY_LIMIT: int

-LAYOUT_LIMIT: int

-autoDock: bool

-catIndex: int

-currentcIndex: int

-preview[]: IntPtr

-screenWidth: int

-screenHeight: int

-adWindows[]: Category

-windowGroups[]: Category

-hotkeys[]: Hotkey

-data: DataHandler

+AutoArrange()

+AddtoGroup(window, index)

+CloseAllWindows()

+CloseCat(index)

+CreateWin(hWnd): Window

+GetIcon(hWnd): Icon

+IsAltTabWindow(hWnd): bool

+KillAllWindows()

+KillCat(index)

+MoveWindow(direction)

+NewCategory(index, main)

+ResizeWindow(x)

+RearrangeCategory(index)

+RefreshTable(index)

+Restore()

+UpdateCategories()

Window

+Handle: IntPtr

+xPos: int

+yPos: int

+Width: int

+Height: int

+Title: string

Hotkey

+key: Keys

+modifier: int

-hWnd: IntPtr

-id: int

+Register(): bool

+Unregister(): bool

DataHandler

-Document: XDocument

+InitializeData()

+GetKey(e): Keys

+GetMod(e): int

Category

+CategoryName: string

+MainWindow: Window

-Windows: List<Window>

+AddWindow(window): bool

+AddtoFirst(window): bool

+Clear()

+GetWindow(index): Window

+GetHandle(index): IntPtr

+hasWindow(window): bool

+isEmpty(): bool

+isFull(): bool

+isMain(window): bool

+numberofWindows(): int

+RemoveWindow(window)

+RemoveAt(index)

+SetDefaultMainWindow()

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 25

6.2 Interface Design

Figure 6.2: Interface Design

The interface design in Figure 6.2 follows minimalistic concepts and is based on a grid layout

following symmetrical approach using grids as discussed by Ngo and Ch’ng (2001). Composing

and designing spaces with grids allow controls to be propagated consistently, allowing a more

structured flow for users to access controls and interact with the application. The positioning of

main controls on the top-right of the interface tailors towards user expectations in control

positions, reflecting on the information obtained from the questionnaire.

Window Title Window Title

Current Category Viewed Auto-Dock Status

Window

Snapshot

Window

Snapshot

Settings Close

General Controls List of Windows

Visibility Controls

Category Controls

Window Controls

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 26

6.3 Screen Layout Designs

6.3.1 The 50% + 23:77 Layout

This layout is drawn directly from the results obtained from the analysis, which is to have a main

working window covering 50% of the screen, while the rest of the windows are tiled from top to

bottom in a 23:77 ratio, with the last window taking up the remaining space (see Figure 6.3.1).

Although the 23:77 ratio was applied indirectly to individual windows, the original experiment

was based on the effectiveness of performing computer-based tasks on the screen. The screen

displays content in a similar way; windows just divides the screen into small sections – smaller

screens. Thus, the application of the ratio on individual windows may create the same effect of

displaying content for high user performance due to its similarity.

Figure 6.3.1: 50% + 23:77 Layout

1

2

3

4

Screen Width / 2 Screen Width / 2

(2
3
/7

7
)*

(S
creen

 W
id

th
 / 2

)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 27

6.3.2 Conformed Golden Spiral Layout

The Golden Spiral is a logarithmic spiral where the spiral gets further from its origin by a factor

of the Golden Ratio for every quarter turn (see Figure 6.3.2). The Golden Spiral cannot be

applied correctly to monitor screens because no monitor aspect ratio uses the Golden Ratio.

Nevertheless, this layout was created to explore the flow of a similar arrangement based on the

Golden Section using the Golden Ratio for the size and arrangement of windows. The Golden

Ratio is expressed as φ which holds the value:

φ =
1 ± √5

2

Due to the aforementioned fact that computer screen ratios do not match the Golden Ratio as

well as screen resolutions being different for each user, it is impossible to apply the spiral on

computer screens. However, it is possible to apply the ratio to each individual window on screen,

but layouts are based on the overall screen’s width and height; applying it to individual windows

does not accurately reflect the Golden Section theory as a screen layout. Because of this, the

spiral will origin from the lower-left corner of the screen and conform to the screen’s width and

height while still partially using the golden ratio in determining measurements of a window.

Figure 6.3.2: Conformed Golden Spiral Layout

1

2

3 4

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 28

6.3.3 Grid Layout

The grid layout is a test for minimum layout complexity based on Bonsiepe’s concept (1968) as

well as Comber and Maltby’s evaluation method (1995) as mentioned in the literature review. A

layout of 4 windows with minimum complexity would all have the same widths and heights

aligned as symmetrical as possible following the Gestalt principles of visual balance where a

psychological sense of equilibrium is achieved when visual ‘weight’ is placed evenly on each

side of an axis (Chang, Dooley & Tuovinen, 2002).

Figure 6.3.3: Grid Layout

1

2

3

4

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 29

6.3.4 Unaligned Layout

This layout was designed based on the same theory used in the grid layout but with high layout

complexity. Windows are not aligned with one another at any side and have irregular spaces

between them. Compared to the other layouts, this does not maximize the use of space which

serves as a representation of daily computer screen states where windows are not aligned and are

simply scattered throughout the screen.

Figure 6.3.4: Unaligned Layout

1

2
3

4

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 30

6.4 Algorithm Design

Throughout the iterative development process of this project, screen layouts were tested and

evaluated by manually setting window position and sizes in the application using fixed values,

before an algorithm is designed. It is after the evaluation process which determines the accepted

screen layout to be used for the application. Therefore, only the 50% + 23:77 layout which was

accepted and finalized has a working algorithm which is documented in this section.

An algorithm is a fixed procedure of calculations designed to solve a problem based on known

variables; in this case, the number of windows. The algorithm needs to rearrange windows in a

set of position and sizes in a way that maximizes the use of screen space. As the determined

method for handling large number of windows is by categorization, the algorithm must reset

itself when the layout limit is reached – that is, when the designed screen layout can no longer

support any more usable windows. Meanwhile, the algorithm must also set a main window for

each category with its own size and position regardless of any other factors that may affect its

arrangement. Therefore, it must find and arrange the main window, determine the remaining

space available and then arrange the rest of the windows within the remaining space while

checking the layout limit and ignoring the main window. This requires logical comparisons and

incremental loops to manipulate each window. A pseudocode was written in Figure 6.4 below.

// Constants

Widths of all windows are half of screen width, x.

Number of windows, n.

// Manipulative Variable

Y-position of current window, y.

Loop until all windows are arranged.
{

Get current window in the loop.
IF current window is main window,
THEN

Set its x-position = 0, y-position = 0, width = x, height = screenHeight

 ELSE IF twice the current y-position LESS THAN screen height minus current y-position,
 THEN
 Set its x-position = x, y-position = y, width = x, height = screenHeight - y

 ELSE

newY = (23/77) * x
 ROUND UP newY

Set its x-position = x, y-position = y, width = x, height = newY,
ADD newY to y

}

Figure 6.4: 50% + 23:77 Algorithm Pseudocode

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 31

7.0 Development

The application was developed with Visual C# using Microsoft Visual Studio 2013, making use

of .NET Framework 4.5.1 to take advantage of interoperability using Platform Invocation

Services (P/Invoke) to integrate with machine language via dynamic-link libraries (DLL) of the

Windows API. This ensures interoperability between high-level programming language with the

native code, allowing direct manipulation over the Windows 7 user interface through DLL

imports of the user32.dll library for user interface access.

An interface was developed based to ensure most of the controls can be accessed with the mouse

for new users or if the user does not prefer using hotkeys to enhance usability. The icons used

were from the Token icon set designed by a deviantART user named “brsev” which is free for

personal use under the Creative Commons Attribution-Non-Commerical 3.0 license (Brooks,

2009). Credits to the Photoshop .PSD file provided which allowed other original icons used for

this project to be developed using the same colour scheme and style, mainly the arrange by

category, make active window, kill window process and minimize interface icon (see Appendix

H, Figure H1 for interface screenshot). The interface allows users to directly manage window

groups and offers user customization in renaming categories (see Appendix H, Figure H4).

Besides that, showing window snapshots within the interface is done by integrating with the

Desktop Window Manager (DWM) API which collects full-sized bitmap images of all active

windows at any point in time. The snapshots are not just Windows Forms objects which can be

manipulated normally. Displaying window snapshots works by registering other window handles

to the application’s window handle, creating a reference from the memory spaces of other

window processes to the application’s process. The application stores these window handles

which can then be manipulated using the DwmUpdateThumbnailProperties function call to set

the size and position in which the window snapshots will display in the application’s interface

(see Appendix H, Figure H3). Some of the implementations were borrowed and modified from a

tutorial on the DWM API for Windows Vista (De Smet, 2006). Obtaining window icons work in

a similar method but only requires a call to the Win32 API to fetch the icon reference which is

then converted into an icon object. Due to some problems in fetching icons from certain

windows, Hartikainen (2007) proposed a solution by listing all possible ways in C# source code

for obtaining different types of icons from windows. This code was adapted and used for the

application.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 32

Based on the usability experiment, the 50% + 23:77 layout was accepted to be further developed

in the iterative development process. However, before the application is able to implement the

algorithm for the layout, the application needs to select all “real” windows. This is because

Windows 7 has plenty of windows hidden and running in the background which needs to be

omitted. Using the EnumWindows function from the Win32 API to go through all windows in

the system, each window must pass through a check to determine if they are “real” windows

before any further manipulation is to be done. Some windows are also “Tool Windows” which

are floating toolbars linked to a parent window; therefore, they are not individual windows that

should be arranged on screen. Basically, windows which appear in the Windows Task Switcher

brought up using the Alt + Tab key are “real” windows. In a Microsoft Developer Network blog

article, the rule for determining windows which appear in the Alt + Tab list is the “most

meaningful representative window from each cluster of windows related by ownership” (Chen,

2010). A post from Stack Overflow Q&A forums addresses this method, providing it in the form

of C++ source code and further expands it by excluding windows with invisible title bars as well

as tool windows (Dinham, 2011). This IsAltTabWindow function written in C++ was adapted

and slightly modified for this project into the C# language with P/Invoke to import interoperable

functions and data structures from the Win32 API.

For the rearrangement of windows, the application applies the 50% + 23:77 layout algorithm in a

loop which checks through the list of windows for “real” windows. Once that is done, it checks if

the current category is full and creates a new one if it is, automatically assigning the current

window as the main window. This is because the user can add windows to categories, swap

windows and rearrange them at any time, so a fixed counter is not a viable method. Since the

main window of a category can be at any position in the window list at any given time, the loop

also checks each window to see if it is the main window of the category, then immediately uses

the SetWindowPos function from the Win32 API to arrange it in the fixed position and size on

the left side of the screen based on the layout algorithm. Every other window which is not the

main window is arranged from top to bottom at the right side (see Appendix H, Figure H2).

Eventually the current category will be full and the loop moves on to the next category. Other

functionality is also achieved with other Win32 API functions such as using the SendMessage

function to send a WM_CLOSE message which attempts to close windows (Appendix H, Figure

H5) and GetProcessById to get and terminate window processes.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 33

One important development progress in the application is the automatic switching of windows.

The application implements an automatic docking function which automatically docks windows

in the direction of pressed arrow keys, automatically resizing any window to ensure all windows

fit into the docked space without overlapping each other (Appendix H, Figure H6). As a result of

the KLM cognitive analysis on existing software, it was seen that all 3 existing software did not

automate the window switching task for the user. Users had to manually point and click each

desired window to repeat the operation. Therefore, the application aims to automatically switch

to another window, but it not as simple as it seems. In order for window switching to be effective,

it must not switch to a previous window which the user has already manipulated. There were two

approaches that were studied at this point:

1. Store each window reference that the user has manipulated. Then, enumerate all windows

and check if the window has already been manipulated. If yes, ignore and go to the next

window. If all windows were manipulated, clear the stored references.

2. Identify the back-most window and switch to that window.

Solution #2 was chosen because it was more consistent. Solution #1 would switch to a random

window every time and take up memory space. Although Solution #1 is faster because it is more

direct, Solution #2 benefits may benefit many operations in future by identifying window Z-

Order, which is the ordering used in overlapping windows. A higher Z-Order indicates that the

window is drawn on top of other windows and vice versa for a lower Z-Order. However, unlike

other functionality, no tutorials, help or proposed solutions were found on the Internet to find and

obtain the reference to the back-most window. This is because there are many unwanted invisible

windows running in Windows 7 and there are no API functions to precisely perform this

functionality. Through persistent studying and analysis of programming concepts, a solution was

developed. First, the application loops through the Z-Order upwards from the current window,

counting all higher order windows if they are valid windows. Once the loop has reached the top

of the Z-Order, it counts how many valid windows the loop went through minus the current

window. If the value is incorrect, then the loop starts over by moving on to the next window

down the Z-Order. This operation repeats until there the counter and the number of valid

windows are correct. This would mean that all other valid windows are on top of the current

window. No more valid windows would be below the current window because all valid windows

were already accounted for in the loop.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 34

In order to make it a background application, Windows Forms provides functions to completely

hide and show windows. Windows Forms also provide a control component called NotifyIcon

which serves as a tray icon in the taskbar for notifications. By simply hiding the form, the

NotifyIcon can be made visible in the tray for the user to restore at any point in time. The icon

also has event functions which can perform tasks when clicked, such as to show a context menu

to allow users to access functionality without restoring the main form. The next challenge from

this point was to make it a startup application which automatically runs when Windows starts.

This was achieved by simply adding a registry key containing the application path into Windows’

startup path.

Lastly, for persistent and reconfigurable hotkey data to be remembered by the application,

hotkey definitions are generated and stored in an XML (Extensible Markup Language) file

because XML is a core technology used in the .NET Framework. It is fully supported as almost

all parts of the .NET Framework use XML as the native data representation format. XML is also

platform-neutral, making it one of the best technologies for future interoperability between

different systems, not just Windows. Furthermore, by making use of Linq to XML technology

provided since .NET Framework 4.0, adding, editing and retrieving data from file is easy and

extremely efficient. Data operations are handled by the DataHandler class of the application.

Then, the application has a Hotkey class to register it globally in the Windows operating system

also by using functions imported from the Win32 API, namely RegisterHotKey and

UnregisterHotKey based on a tutorial provided by Rutland (2010) in the Dream.In.Code forums.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 35

8.0 Evaluation

8.1 Usability Experiment

An experiment was conducted with 6 home and office users who have been using personal

computers for their daily tasks for at least 3 years, and worked with the Windows 7 operating

system for at least 1 year. This amount of time spent in using computers ensures that they are

familiar with mouse and keyboard interactions, as well as the Windows 7 interface. The aim of

this experiment is to study usability on aspects defined in ISO 9241 which are effectiveness,

efficiency and satisfaction based on screen layout complexity.

8.1.1 Test System Specification

System Unit: Acer Veriton M2610G

Processor: Intel Core i5-3330 CPU @ 3.00Ghz (4 cores)

Memory: 4096 MB

Mouse: Acer SM-9020B Optical Mouse

Keyboard: Acer PR-1101U (QWERTY US Layout)

Monitor: Acer V196HQL (18.5”)

Resolution: 1366x768 (60Hz)

Aspect Ratio: 16:9

Operating System: Windows 7 Professional 6.1, Build 7600 (32-bit)

8.1.2 Procedure

The test was done using a desktop computer in the computer labs located in SEGi College

Subang Jaya. The computers are setup by having 4 windows opened, which are Google Chrome,

Microsoft Word, Notepad and Windows Explorer. The Google Chrome web browser is set to

display a page with a generated paragraph of text by a Lipsum Generator (2014) while Windows

Explorer was navigated to the user folder (C:\Users\user). Each window is then added into a

category one-by-one, to preserve their order when being rearranged by the program. This ensures

each participant experiences the exact same arrangement of windows for each screen layout.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 36

Before the test began, participants were told about the application and its functionality. They

were given only one trial run to familiarize themselves with the arrangement and tasks they were

about to perform. Then, each participant was asked to perform the following tasks:

1. Press the Shift+1 key to rearrange windows.

2. Drag to select the first Lorem Ipsum paragraph in Google Chrome.

3. Drag and drop the paragraph to Microsoft Word.

4. Type ‘done’ in the Notepad.

5. Double-click the My Documents folder in the Windows Explorer.

The participants were also told to ignore selection and typing errors and carry on as they

normally would as the errors are recorded in the test. Four layouts were presented to the users in

the following order: 50% + 23:77 Layout (FTL), Conformed Golden Spiral Layout (CGSL), Grid

Layout (GL) and Unaligned Layout (UL). These tasks were repeated twice for each layout.

Improvements in the second run may suggest that the layout is learnable and memorable which

allows for better performance when users are more familiar with the layout. Each layout was also

assigned a relative complexity metric based on a simplified version of Comber & Maltby (1995)

screen evaluation methods, with 1 being minimum complexity and 4 being maximum complexity.

Grid Layout: 1 (Minimum Complexity)

50% + 23:77 Layout: 2 (Low Complexity)

Conformed Golden Spiral Layout: 3 (High Complexity)

Unaligned Layout: 4 (Maximum Complexity)

Users were then asked to rate these layouts in terms of attractiveness, ease of use and need for

redesign or rearrangement from 1 to 5 as well as to sort them from best to worst.

8.1.3 Results

Based on the data obtained from this experiment (which can be found at Appendix E of this

report), the best layout can be observed in terms of time taken to finish all tasks, user ratings of

the usability of the layout in performing given tasks and user preferences in layout selection.

These information were tabulated in Table 8.1.3 and presented in the following page.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 37

 GL FTL CGSL UL

Relative Layout Complexity 1 2 3 4

Total Time on 1st Run 64.09s 52.19s 69.54s 63.82s

Total Time on 2nd Run 56.05s 55.03s 67.69s 54.81s

Average Time on 1st Run 10.68s 8.67s 11.59s 10.64s

Average Time on 2nd Run 9.34s 9.17s 11.28s 9.14s

Total Average Time 10.01s 8.94s 11.44s 9.89s

Percentage of Errors on 1st Run 67% 0% 17% 83%

Percentage of Errors on 2nd Run 17% 33% 33% 33%

Average Percentage of Errors 42% 17% 25% 58%

Total Attractiveness Rating 26 27 17 13

Total Ease of Use Rating 27 28 15 13

Total Redesign Rating -9 -9 -25 -24

Total Preference Rating 17 22 10 9

Total Satisfaction Rating 61 68 17 11

Table 8.1.3: Usability Experiment Results

8.1.3.1 Effectiveness

The effectiveness of a screen layout is determined by the percentage of errors made while

performing the tasks outlined in this experiment. The higher the average percentage of errors, the

lower the effectiveness of the layout. Errors are simplified into two values, 0 or 1. Any selection

and/or typing errors made by the participants during this experiment will result in an error value

of 1. These values are added together for both the first run and the second run to devise a

percentage of errors per run. The percentage of errors are then averaged out to obtain an average

percentage for each screen layout. These were plotted into a graph in Figure 8.1.3.1 to examine

its relationship.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 38

Figure 8.1.3.1: Effectiveness over Layout Complexity Graph

8.1.3.2 Efficiency

Efficiency is determined by the time taken in performing all 5 tasks outlined in this experiment.

The lower the time taken, the higher the efficiency as shown in the Figure 8.1.3.2 graph below.

Figure 8.1.3.2: Efficiency over Layout Complexity Graph

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5
A

ve
ra

ge
 P

er
ce

n
ta

ge
 o

f
Er

ro
rs

 (
%

)
Relative Layout Complexity

Effectiveness over Layout Complexity

0

2

4

6

8

10

12

14

0 1 2 3 4 5

To
ta

l A
ve

ra
ge

 T
im

e
Ta

ke
n

 (
s)

Relative Layout Complexity

Efficiency over Layout Complexity

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 39

8.1.3.3 Satisfaction

User satisfaction is divided into 4 parts in which users rate based on their opinion and subjective

experiences. First criteria is attractiveness which is used to determine the users’ point of view of

the layout in terms of aesthetics alone. Attractiveness can be attributed to desirability or

likeability. Second criteria is ease of use which is used to cognitively study user perception in

task performance. Third criteria is the need for redesign or rearrangement which is used to

determine acceptance of the layout because some users may dislike the appearance and usability

of a screen layout but are still willing to accept and perform tasks as normal in the layout. User

acceptance can be used to subjectively determine how much of an “eyesore” the layout is to look

at; thus requiring the urge for rearrangement. An example would be where a user rates the CGSL

layout badly in terms of aesthetics and usability, but because it maximizes the use of space, the

user may feel less need to rearrange windows compared to the UL layout which has windows

scattered on the screen with spaces in between. Lastly, the fourth criteria is preference from best

to worst. Users are simply told to state their preference of the 4 layouts presented to them. All of

these factors contribute towards overall satisfaction of the screen layout. Figure 8.1.3.3 below

plots this into a graph to examine the relationship between satisfaction and layout complexity.

Figure 8.1.3.3: Satisfaction over Layout Complexity Graph

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

To
ta

l U
se

r
Sa

ti
sf

ac
ti

o
n

 R
at

in
g

Relative Layout Complexity

Satisfaction over Layout Complexity

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 40

8.1.4 Discussion

Factors affecting this experiment consist of computer habits where some participants were

observed to drag and drop to a presumed location first before actually moving to the actual

location. This particular occurrence may be associated with a habit of positioning certain

windows at certain parts of the screen in their home computer. Some participants were also

observed to have a habit of dragging items from left-to-right which allowed them to perform

much faster and naturally than dragging items from right-to-left.

Another factor observed which affects the time taken in performing tasks is the size of windows.

Layouts such as the CGSL allowed for a very small window compared to other layouts.

Participants were observed to have trouble navigating and finding items in smaller windows,

even in the UL layout. For example, when dragging and selecting text in the web browser,

participants scroll up and down to ensure that all of the text is selected because they are unable to

see all of the text completely. Cognitively, a lot of focused attention is put into carrying out tasks

within the small window and participants seem to be “lost” when returning to the screen to

perform tasks with other windows.

Lastly, the familiarity of tasks may also influence the result for each layout. However, this factor

is of the least concern because the FTL layout was presented to the participants first only after a

single trial run, yet it was the best performer in all usability aspects compared to the other layouts.

8.1.5 Conclusion

Throughout the different aspects of usability different relationships were observed based on

relative layout complexity. Notably, the effectiveness of a screen layout over layout complexity

generated a parabolic curve similar to the predicted usability over complexity graph in Comber

& Maltby’s (1995) experiment. Relationships for other factors such as efficiency are difficult to

determine due to the lack of data but was observed to have the appearance of a sinusoidal graph.

Lastly, user satisfaction is the least predictable and no clear data relationships can be determined.

Overall, the FTL layout with a low layout complexity performs the best in attractiveness, ease of

use and satisfaction. The two extremes of complexity – GL being the minimum complexity and

UL being the maximum complexity, performed worse than the FTL low complexity layout. In

general, low complexity layouts are significantly more favourable than high complexity layouts.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 41

8.2 White-Box Testing

The white-box testing is done at the final iteration of the development process to find and fix

programming errors and bugs that occur during run-time. The test explores different paths along

the user interactions defined in the Use Case Diagram with various types of input and checks if

the output is correct. It is done using a test plan outlined in Appendix F of this report. The test

has uncovered several bugs during run-time, mostly due to logic errors.

8.2.1 Bugs Found & Fixed

1. Hidden windows did not show properly.

Solution: Fix hide logic.

Hidden windows were removed from the category upon update, so the application had

nothing to show. Hidden windows are now added to a hidden group for reference.

2. Only half of the non-existent windows were removed when updating a category.

Solution: Omit loop counter increment.

When refreshing the categories to remove non-existent windows, the loop ends halfway

through, only removing half of the windows each time. This was fixed, due to the

dynamic nature of Lists which move the objects up to fill in empty spaces. When an

object is removed, the next object shifts to the current index. When the loop counter

increases and checks for the next index, the object is no longer there.

8.2.2 Unfixed Bugs

By default, the taskbar in Windows 7 is docked at the bottom of the screen. However, when

docking and arranging windows, windows are seen to be positioned behind the taskbar if the

taskbar is docked to the left. This problem does not occur when the taskbar is at the bottom, right

or top of the screen. This is because the SetWindowPos function sets window positions from the

leftmost position of the screen (x = 0). In order to fix this, an offset must be added specifically

for this situation. Due to time constraints, this bug was not fixed because it requires more work

than predicted. The solution requires the application to not only obtain the taskbar position, but

also its size because taskbars can be freely resized in Windows 7. This also requires an

implementation of another API, which is the Shell32 API to get taskbar information.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 42

8.3 Heuristics and Keystroke-Level Model

Heuristics Check Yes No N/A Comments

Visibility of System Status

✔

Interface has labels to keep

track of status, user is

shown a balloon tooltip

when changing states.

The system should always keep user

informed about what is going on, through

suitable feedback within reasonable time.

Match Between System and Real World

✔

No technical jargon used,

windows and category

buttons are listed from top-

to-bottom and left-to-right.

Arrange information in a natural and logical

order with language, words and concepts

familiar to the user.

User Control and Freedom

✔
Can easily change states and

tells the user how to do so

with tooltips.
Allow users to leave the unwanted state

without going through a long dialogue.

Consistency and Standards

✔
Consistent interface, icons

make sense and have

tooltips for accessibility.
Follow platform conventions, consistent

meanings without conflicting usage patterns.

Error Prevention

✔

Always asks for

confirmation on irreversible

actions.
Eliminate error-prone conditions or present

users with a confirmation before committing

to an action with irreversible consequences.

Recognition Rather Than Recall

✔

Icons and visual

representations are easily

understandable and have

tooltips as reminders.

Minimize user memory load with visible

objects, actions and options as well as easily

retrievable instructions or descriptions.

Flexibility and Efficiency of Use

✔

Most functions accessible

with both mouse and

keyboard, interface helps

beginner users a lot.

Allow users to tailor frequent actions and

have accelerators not visible to beginners to

speed interactions for expert users.

Aesthetic and Minimalist Design

✔
Simple grid interface with

mostly icons. Tooltips only

show when needed.
Does not contain information and visual

loads which are irrelevant.

Help Users Recognize, Diagnose and

Recover from Errors

✔

Tells the user why the

problem occurred and what

should be done. Also tells

users how to exit from

unwanted states.

Error messages explained in plain language,

precisely indicate the problem and

constructively suggest a solution.

Help and Documentation

✔

Clear and easy instructions

with tooltips on each button

and label.
Provide easy-to-find information focused on

user tasks, list precise instructions and

documentation must not be too large.

Table 8.3a: Application’s Heuristics Checklist

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 43

Description Operation Time (sec)

Mentally prepare for auto-dock hotkey M[hotkey] 1.20

Hand to keyboard H[keyboard] 0.40

Hotkey Ctrl + Shift + Tab K[hotkey] 0.20

Mentally prepare for docking keys M[hotkey] 1.20

Hand to arrow keys H[keyboard] 0.40

Hold Alt Key K[key] 0.20

Tap left arrow key K[key] 0.20

Tap right arrow key K[key] 0.20

Tap right arrow key K[key] 0.20

 TOTAL ESTIMATED TIME: 4.20

KLM Formula:

2(M + H) + 5K = 4.2 seconds

Table 8.3b: Application’s Keystroke Level Model

The real problem with most window management tool is the lack of automation. Users have to

manually select windows one-by-one and iterate the same actions over several windows. The

application developed in this project identifies this problem and proposes window groups and

automatic switching as a solution. As seen in the KLM analysis in Table 8.3b, all point-and-click

operations were eliminated by automatically switching to the window located at the back-most

position of the screen. This greatly reduces the number and type of operations, significantly

increasing task efficiency. In addition, due to user-centered design methods for flexibility, this

automatic switching can simply be ignored if the user does not want to switch windows by

letting go the Alt key.

The heuristics check in Table 8.3a ensures high usability in all of its functionality. For example,

the application makes use of balloon tooltips instead of message dialogs to show

acknowledgement messages to allow the user to know the current system state; thus, it never

interrupts the user with the exception of error messages and confirmation messages which uses

dialogs. Other examples include options to run the application on startup, renaming of categories,

automatic arrangement and adding of windows into categories, and other features which offer

total control over the interface.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 44

8.4 Limitations of the Current System

The project scope was focused on solving Windows 7 window management problems. The first

and foremost limitation is that the application is currently only suited to work in Windows 7.

Although Windows 8 may use similar technologies, the application was not tested in Windows 8

and new bugs may occur under that environment.

Due to time constraints, a functionality which was scheduled to complete within the project

timeframe were not fully developed. The application aimed to implement reconfigurable hotkeys

for user-friendliness but it was dropped from the project due to its low MoSCoW priority within

the tight timeframe. Configuring hotkeys require persistent data to be stored in the user’s

computer file system and was well achieved using XML technology in the project. However,

there was not enough time to create an actual interface for users to change and customize hotkeys

through the application. Implementation of an interface for binding hotkeys requires more time

than intended for data manipulation and file input/output management. It is possible however, to

change the hotkeys directly in the XML file because the application still reads hotkey bindings

from the XML file.

As seen in the White-Box Testing, a bug on window positioning was also found for users with

taskbars docked on the left side of the screen. For now, the application does not work correctly in

this particular situation. Future implementations will look more into taskbar information and

other screen elements which may affect the application’s arrangement functionality.

Other future implementations include:

 Animated window movements

 Compatibility for other versions of Windows

 Compatibility for other platforms

Overall, the application has met project requirements and satisfied its primary functions as an

efficient solution for window management limitations.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 45

9.0 Conclusion

Window manipulation coupled with desktop space management using hotkeys and usable screen

layouts increases multi-tasking effectiveness. The grouping of windows into categories serves as

an effective window manipulation method by mapping real-life methods into computer-based

operations. Manipulating windows by groups reduces the operation of selecting desired windows

one-by-one, significantly reducing preparation time, number of task iterations per window, as

well as completely removing the lengthy point-and-click operation in finding desired windows.

In addition, the arrangement of windows on screen affects human-computer interaction and

usability due to the cognitive tendency of humans to focus on one window at a time when multi-

tasking. Window arrangements such as the 50% + 23:77 layout which allow users to focus on a

large main window while providing functionality to allow switching window positions with the

main window increases multi-tasking capabilities dramatically. The cognitive psychology of

humans was analyzed using KLM-GOMS analysis to further reveal that hotkey operations can be

simplified by allowing them to be executed with one hand, reducing estimated time taken by

0.40 seconds for each hand movement operation from keyboard to mouse and vice versa. The

simplification of hotkey operations is crucial for frequent tasks in order to save time.

As a result of applied theory, standards, analysis and experimentation studied in this project, a

highly usable working application was developed using Visual C#, .NET Framework 4.0, Win32

API and DWM API to address the limitations of window manipulation in Windows 7 as well as

increasing multi-tasking capabilities and efficiencies through space management of windows on

computer screens. Future usability improvements for the software include animation of window

movement, customizable layouts and compatibility with other platforms and operating systems.

In terms of user preference, it is found that users mostly prefer layouts with low complexity,

followed by minimal complexity, high complexity and maximum complexity. However, the

feedback on user preferences were obtained from only 6 participants; therefore, its results may

not be completely reliable and a larger sample size should be used in future.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 46

10.0 Bibliography

Actual Tools. (2013). Actual Window Manager: Multiple Monitors, Virtual Desktops, Windows

Control and Other Useful Tools. [online] Available at:

http://www.actualtools.com/windowmanager/ [Accessed 7 Nov 2013].

Benton, N., Kennedy, A. & Russo, C. (2004). Adventures in Interoperability: The SML.NET

Experience. In: PPDP ’04. pp.10-12.

Brooks, E. (2009). Token by brsev on deviantART. Available at:

http://brsev.deviantart.com/art/Token-128429570 [Accessed: 21 Jan 2014].

Bonsiepe, G. A. (1968). A method of quantifying order in typographic design. Journal of

Typographic Research, 2, 203-220.

Boselie, F. (1997). The golden section and the shape of objects. Empirical Studies of the Arts, 15,

131-141.

Card, S. K., Moran, T. P. & Newell, A. (1983). The Psychology of Human-computer Interaction.

Hillsdale, N.J.: L. Erlbaum Associates.

Chang, D., Dooley, L. & Tuovinen, J.E. (2002). Gestalt Theory in Visual Screen Design - A New

Look at an Old Subject. In Proc. WCCE2001 Australian Topics: Selected Papers from the

Seventh World Conference on Computers in Education, Copenhagen, Denmark. CRPIT, 8.

McDougall, A., Murnane, J. and Chambers, D., Eds. ACS. 5-12.

Chen, R. (2010). Which windows appear in the Alt+Tab list? - The Old New Thing, MSDN Blogs.

Available at: http://blogs.msdn.com/b/oldnewthing/archive/2007/10/08/5351207.aspx [Accessed:

18 Dec 2013].

http://www.actualtools.com/windowmanager/
http://brsev.deviantart.com/art/Token-128429570
http://blogs.msdn.com/b/oldnewthing/archive/2007/10/08/5351207.aspx

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 47

Comber, T. & Maltby, J. R. (1995). Evaluating usability of screen designs with layout complexity.

[online] Southern Cross University. Available at:

http://epubs.scu.edu.au/cgi/viewcontent.cgi?article=1000&context=comm_pubs [Accessed: 10

Nov 2013].

Davis, S. T. & Jahnke J. C. (1991). Unity and the golden section: Rules for aesthetic choice?.

American Journal of Psychology, 104, 257-277.

De Smet, B. (2006). Programming the Windows Vista DWM in C#. [online] B# .NET Blog.

Available at: http://bartdesmet.net/blogs/bart/archive/2006/10/05/4495.aspx [Accessed 22 Feb

2014].

Dinham, P. (2011). c++ - Why does EnumWindows return more windows than I

expected?, Stack Overflow. Available at: http://stackoverflow.com/questions/7277366/why-does-

enumwindows-return-more-windows-than-i-expected [Accessed: 18 Dec 2013].

Hartikainen, J. (2007). Find an application’s icon with WinAPI. [online] CodeUtopia. Available

at: http://codeutopia.net/blog/2007/12/18/find-an-applications-icon-with-winapi/ [Accessed 22

Feb 2014].

Hatton, S. (2008). Choosing the right prioritisation method. 19th Australian Conference on

Software Engineering, 517 - 526.

Johnson, A. (1999). Famous problems and their mathematicians. Englewood, Colo.: Teacher

Ideas Press.

Kerr, J. & Hunter, R. (1994). Inside RAD: How to Build a Fully Functional System in 90 Days or

Less. 1st ed. New York: McGraw-Hill.

http://epubs.scu.edu.au/cgi/viewcontent.cgi?article=1000&context=comm_pubs
http://bartdesmet.net/blogs/bart/archive/2006/10/05/4495.aspx
http://stackoverflow.com/questions/7277366/why-does-enumwindows-return-more-windows-than-i-expected
http://stackoverflow.com/questions/7277366/why-does-enumwindows-return-more-windows-than-i-expected
http://codeutopia.net/blog/2007/12/18/find-an-applications-icon-with-winapi/

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 48

Kieras, D. E. (1993). Using the Keystroke-Level Model to Estimate Execution Times. The

University of Michigan. Available at: http://www.pitt.edu/~cmlewis/KSM.pdf [Accessed 8 Nov

2013].

Lancet, Y. (2013). Review: Chameleon Window Manager has many features and a few too many

bugs | PCWorld. [online] Available at: http://www.pcworld.com/article/2036721/review-

chamelon-window-manager-has-many-features-and-a-few-too-many-bugs.html [Accessed: 9

Nov 2013].

Lane, D. M., Napier, H. A., Peres, S. C. & Sandor, A. (2004). Hidden costs of graphical user

interfaces: Failure to make the transition from menus and icon toolbars to keyboard shortcuts.

International Journal of Human–Computer Interaction, 18, 133–144.

Lipsum Generator. (2014). Lorem Ipsum - All the facts. Available at: http://www.lipsum.com/

[Accessed: 12 Mar 2014].

Ma, Q. (2009). The Effectiveness of Requirements Prioritization Techniques for a Medium to

Large Number of Requirements: A Systematic Literature Review. [online] AUT Scholarly

Commons. Available at:

http://aut.researchgateway.ac.nz/bitstream/handle/10292/833/MaQ.pdf?sequence=3 [Accessed 4

Oct 2013].

Microsoft Windows. (2013). Keyboard shortcuts - Microsoft Windows Help. [online] Available

at: http://windows.microsoft.com/en-my/windows/keyboard-shortcuts#keyboard-

shortcuts=windows-7 [Accessed 7 Nov 2013].

Microsoft Windows (2013). Manage multiple windows - Microsoft Windows Help. [online]

Available at: http://windows.microsoft.com/en-my/windows/manage-multiple-

windows#1TC=windows-7§ion_4 [Accessed 7 Nov 2013].

http://www.pitt.edu/~cmlewis/KSM.pdf
http://www.pcworld.com/article/2036721/review-chamelon-window-manager-has-many-features-and-a-few-too-many-bugs.html
http://www.pcworld.com/article/2036721/review-chamelon-window-manager-has-many-features-and-a-few-too-many-bugs.html
http://www.lipsum.com/

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 49

NeoSoft Tools. (2013). Chameleon Window Manager. [online] Available at:

http://www.chameleon-managers.com/window-manager/ [Accessed 7 Nov 2013].

Ngo D. & Ch’ng E. (2001). Screen Design: composing with dynamic symmetry. Displays, No. 22,

pp. 115-124.

NTWind Software. (2013). WindowSpace - Organize Your Desktop Workspace for More

Comfort with WindowSpace. [online] Available at:

http://www.ntwind.com/software/windowspace.html [Accessed 7 Nov 2013].

Rutland, C. (2010). Global Hotkeys - C# Tutorials. [online] Dream.In.Code. Available at:

http://www.dreamincode.net/forums/topic/180436-global-hotkeys/ [Accessed 3 Mar 2014].

Tognazzini, B. (1987). Keyboard vs. The Mouse. [online] Available at:

http://www.asktog.com/TOI/toi06KeyboardVMouse1.html [Accessed: 7 Nov 2013].

Tudor, D. & Walter, G. A. (2006). Using an agile approach in a large, traditional organisation.

Proceedings of AGILE 2006 Conference (AGILE’06), 367-373.

Tullis, T. S. (1983). The formatting of alphanumeric displays: a review and analysis. Human

Factors, 25(6), 557-582.

Peres, S. C., Tamborello II, F. P., Fleetwood, M. D., Chung, P. & Paige-Smith, D. L.

(2004). Keyboard Shortcut Usage: The Roles of Social Factors and Computer Experience.

[online] Houston, TX: Department of Psychology, Rice University. Available at:

http://chil.rice.edu/research/pdf/PeresEtal-HFES.pdf [Accessed: 9 Nov 2013].

van Schaik, P. & Ling, J. (2003). The effects of screen ratio and order on information retrieval in

web pages. Displays, 24 (4-5), pp.187-195.

http://www.chameleon-managers.com/window-manager/
http://www.ntwind.com/software/windowspace.html
http://www.dreamincode.net/forums/topic/180436-global-hotkeys/
http://www.asktog.com/TOI/toi06KeyboardVMouse1.html
http://chil.rice.edu/research/pdf/PeresEtal-HFES.pdf

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 50

Appendix A – Chameleon Window Manager Heuristics & KLM

Heuristics Check Yes No N/A Comments

Visibility of System Status

✔

Visual cues are good

enough to represent current

system state.
The system should always keep user

informed about what is going on, through

suitable feedback within reasonable time.

Match Between System and Real World

 ✔

Technical terms were used,

incomprehensible to an

average user.
Arrange information in a natural and logical

order with language, words and concepts

familiar to the user.

User Control and Freedom

✔
Can easily change states.

Allow users to leave the unwanted state

without going through a long dialogue.

Consistency and Standards

 ✔
Interface and layout is not

consistent, all over the

place.
Follow platform conventions, consistent

meanings without conflicting usage patterns.

Error Prevention

 ✔

Does not eliminate error-

prone conditions. Eliminate error-prone conditions or present

users with a confirmation before committing

to an action with irreversible consequences.

Recognition Rather Than Recall

✔

Icons and visual

representations are easily

understandable.
Minimize user memory load with visible

objects, actions and options as well as easily

retrievable instructions or descriptions.

Flexibility and Efficiency of Use

 ✔

No use of hotkeys, all users

must mouse over to button

to perform functions.
Allow users to tailor frequent actions and

have accelerators not visible to beginners to

speed interactions for expert users.

Aesthetic and Minimalist Design

 ✔
Too many buttons added to

all windows. Does not contain information and visual

loads which are irrelevant.

Help Users Recognize, Diagnose and

Recover from Errors

 ✔

Some functions did not

work as expected and no

suggestions were made to

fix the problem.
Error messages explained in plain language,

precisely indicate the problem and

constructively suggest a solution.

Help and Documentation

✔

Clear and easy instructions.

Provide easy-to-find information focused on

user tasks, list precise instructions and

documentation must not be too large.

Table A1: Heuristics Checklist for Chameleon Window Manager

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 51

Description Operation Time (sec)

Reach for mouse H[mouse] 0.40

Point to desired window P[window] 1.10

Select window B[mouse] 0.10

Move cursor to layout button P[button] 1.10

Click layout button B[mouse] 0.10

Move cursor to desired layout P[layout] 1.10

Mentally prepare by looking at layout set M[layout] 1.20

Click layout B[mouse] 0.10

Point to desired window P[window] 1.10

Select window B[mouse] 0.10

Move cursor to layout button P[button] 1.10

Click layout button B[mouse] 0.10

Move cursor to desired layout P[layout] 1.10

Click layout B[mouse] 0.10

Point to desired window P[window] 1.10

Select window B[mouse] 0.10

Move cursor to layout button P[button] 1.10

Click layout button B[mouse] 0.10

Move cursor to desired layout P[layout] 1.10

Click layout B[mouse] 0.10

 TOTAL ESTIMATED TIME: 12.40

KLM Formula:

M + H + 9(P + B) = 12.4 seconds

Table A2: Keystroke Level Model for Chameleon Window Manager

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 52

Appendix B – WindowSpace Heuristics & KLM

Heuristics Check Yes No N/A Comments

Visibility of System Status

✔

Visual cues are good

enough to show current

status.
The system should always keep user

informed about what is going on, through

suitable feedback within reasonable time.

Match Between System and Real World

 ✔

Technical terms were used

but not explained. Arrange information in a natural and logical

order with language, words and concepts

familiar to the user.

User Control and Freedom

✔
Can easily change states.

Allow users to leave the unwanted state

without going through a long dialogue.

Consistency and Standards

✔
Consistent layout with

standardized spacing and

well-structured presentation.
Follow platform conventions, consistent

meanings without conflicting usage patterns.

Error Prevention

 ✔

Does not show confirmation

messages for irreversible

actions.
Eliminate error-prone conditions or present

users with a confirmation before committing

to an action with irreversible consequences.

Recognition Rather Than Recall

✔

Clear and concise

instructions for all

functions.
Minimize user memory load with visible

objects, actions and options as well as easily

retrievable instructions or descriptions.

Flexibility and Efficiency of Use

✔

Easy to use with

reconfigurable hotkeys. Allow users to tailor frequent actions and

have accelerators not visible to beginners to

speed interactions for expert users.

Aesthetic and Minimalist Design

✔
Clean interface with only

relevant information,

nothing else.
Does not contain information and visual

loads which are irrelevant.

Help Users Recognize, Diagnose and

Recover from Errors

✔

Constructive error

messages.

Error messages explained in plain language,

precisely indicate the problem and

constructively suggest a solution.

Help and Documentation

✔

Well-structured and well-

designed support

documentation, high

readability.

Provide easy-to-find information focused on

user tasks, list precise instructions and

documentation must not be too large.

Table B1: Heuristics Checklist for WindowSpace

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 53

Description Operation Time (sec)

Reach for mouse H[mouse] 0.40

Move cursor to desired window P[window] 1.10

Select window B[mouse] 0.10

Mentally prepare for arrangement hotkey set M[hotkey] 1.20

Hand to keyboard H[keyboard] 0.40

Hotkey Win + Num 4 K[hotkey] 0.20

Reach for mouse H[mouse] 0.40

Point to next desired window P[window] 1.10

Select window B[mouse] 0.10

Hand to keyboard H[keyboard] 0.40

Hotkey Win + Num 9 K[hotkey] 0.20

Reach for mouse H[mouse] 0.40

Switch to next window P[window] 1.10

Select window B[mouse] 0.10

Hand to keyboard H[keyboard] 0.40

Hotkey Win + Num 3 K[hotkey] 0.20

 TOTAL ESTIMATED TIME: 7.80

KLM Formula:

M + 3(2H + P + B + K)= 7.8 seconds

Table B2: Keystroke Level Model for WindowSpace

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 54

Appendix C – Actual Window Manager Heuristics & KLM

Heuristics Check Yes No N/A Comments

Visibility of System Status

✔

Visual cues are good

enough to show current

status.
The system should always keep user

informed about what is going on, through

suitable feedback within reasonable time.

Match Between System and Real World

✔

Suitable language with no

technical jargon. Arrange information in a natural and logical

order with language, words and concepts

familiar to the user.

User Control and Freedom

✔
Can easily change states.

Allow users to leave the unwanted state

without going through a long dialogue.

Consistency and Standards

✔
Consistent flow and very

well-structured layout. Follow platform conventions, consistent

meanings without conflicting usage patterns.

Error Prevention

✔

Asks user for confirmation

before performing

irreversible actions.
Eliminate error-prone conditions or present

users with a confirmation before committing

to an action with irreversible consequences.

Recognition Rather Than Recall

 ✔

Too lengthy instructions and

hard to retrieve them,

information overload.
Minimize user memory load with visible

objects, actions and options as well as easily

retrievable instructions or descriptions.

Flexibility and Efficiency of Use

 ✔

Does not provide faster

interaction for many

functions.
Allow users to tailor frequent actions and

have accelerators not visible to beginners to

speed interactions for expert users.

Aesthetic and Minimalist Design

 ✔
Lots of irrelevant

information which can be

further shortened.
Does not contain information and visual

loads which are irrelevant.

Help Users Recognize, Diagnose and

Recover from Errors

✔

Detailed error messages.

Error messages explained in plain language,

precisely indicate the problem and

constructively suggest a solution.

Help and Documentation

 ✔

Extremely lengthy

documentation, very steep

learning curve.
Provide easy-to-find information focused on

user tasks, list precise instructions and

documentation must not be too large.

Table C1: Heuristics Checklist for Actual Window Manager

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 55

Description Operation Time (sec)

Reach for mouse H[mouse] 0.40

Move cursor to desired window P[window] 1.10

Select window B[mouse] 0.10

Hand to keyboard H[keyboard] 0.40

Mental preparation for alignment hotkey set M[hotkey] 1.20

Hotkey Win + Num 7 K[hotkey] 0.20

Mental preparation for resizing hotkey set M[hotkey] 1.20

Hotkey Win + Ctrl + Num 0 K[hotkey] 0.20

Reach for mouse H[mouse] 0.40

Move cursor to desired window P[window] 1.10

Select window B[mouse] 0.10

Hand to keyboard H[keyboard] 0.40

Hotkey Win + Num 9 K[hotkey] 0.20

Mental preparation for resizing hotkey set #2 M[hotkey] 1.20

Hotkey Win + Ctrl + Num 5 K[hotkey] 0.20

Reach for mouse H[mouse] 0.40

Move cursor to desired window P[window] 1.10

Select window B[mouse] 0.10

Hand to keyboard H[keyboard] 0.40

Hotkey Win + Num 3 K[hotkey] 0.20

Hotkey Win + Ctrl + Num 5 K[hotkey] 0.20

 TOTAL ESTIMATED TIME: 10.80

KLM Formula:

3(M + 2H + 2K + P + B) = 10.8 seconds

Table C2: Keystroke Level Model for Actual Window Manager

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 56

Appendix D – Questionnaire Results: Managing Documents and Windows

Figure D1: Question 1

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 57

Figure D2: Question 2

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 58

Figure D3: Question 3

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 59

Figure D4: Question 4

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 60

Figure D5: Question 5

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 61

Figure D6: Question 6

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 62

Figure D7: Question 7

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 63

Figure D8: Question 8

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 64

Figure D9: Question 9

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 65

Figure D10: Question 10

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 66

Appendix E – Usability Experiment Data

Usability Experiment

Course Name: XXXXXXXX – XXXXXXXXXXXX

System Name: Window Management Tool Version: v0.1 Prototype (1st Iteration)

 User #1 User #2 User #3 User #4 User #5 User #6

User Name XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

50% + 23:77 Layout (FTL)

 First Run

Time Taken 7.2s 10.3s 9.0s 9.59s 5.6s 10.5s

Made an Error? 0 0 0 0 0 0

 Second Run

Time Taken 6.4s 12.9s 7.8s 11.23s 5.9s 10.8s

Made an Error? 1 0 0 1 0 0

 Feedback (Rating Out of 5)

Attractiveness 4 4 5 4 5 5

Ease of Use 5 4 5 4 5 5

Needs Redesign 1 2 2 2 1 1

Conformed Golden Spiral Layout (CGSL)

 First Run

Time Taken 10.2s 16.8s 11.0s 12.64s 7.1s 11.8s

Made an Error? 1 0 0 0 0 0

 Second Run

Time Taken 8.7s 12.4s 17.4s 10.49s 8.9s 9.8s

Made an Error? 1 0 0 0 1 0

 Feedback (Rating Out of 5)

Attractiveness 2 3 4 1 3 4

Ease of Use 2 3 2 2 2 4

Needs Redesign 5 3 4 5 3 5

Grid Layout (GL)

 First Run

Time Taken 7.2s 10.8s 12.1s 18.09s 5.4s 10.5s

Made an Error? 1 0 1 1 0 1

 Second Run

Time Taken 7.9s 9.4s 9.9s 13.25s 5.9s 9.7s

Made an Error? 1 0 0 0 0 0

 Feedback (Rating Out of 5)

Attractiveness 5 4 5 3 4 5

Ease of Use 5 4 5 3 5 5

Needs Redesign 1 1 2 3 1 1

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 67

Unaligned Layout (UL)

 First Run

Time Taken 8.3s 10.2s 17.9s 8.72s 7.5s 11.2s

Made an Error? 1 0 1 1 1 1

 Second Run

Time Taken 6.9s 13.0s 9.0s 10.61s 6.8s 8.5s

Made an Error? 0 1 0 0 1 0

 Feedback (Rating Out of 5)

Attractiveness 3 2 1 2 2 3

Ease of Use 3 1 1 3 1 4

Needs Redesign 4 5 5 4 4 2

Layout Preference – Best to Worst

First GL FTL GL FTL FTL FTL

Second FTL GL FTL UL GL GL

Third CGSL CGSL CGSL GL CGSL UL

Fourth UL UL UL CGSL UL CGSL

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 68

Appendix F – White-Box Test Plan

Test Input Process Actual Output Expected

Output

Check

Rearrange 4

windows,

automatically

add to groups

Press

Rearrange All

button

AutoArrange() 50% + 23:77

layout applied,

1 category

created

50% + 23:77

layout applied,

1 category

created

PASS

Rearrange 6

windows,

automatically

add to groups

Press

Rearrange All

button

AutoArrange() 50 + 23:77

layout applied

to Category 1,

Category 2

docked left and

right

50 + 23:77

layout applied

to Category 1,

Category 2

docked left and

right, hide

Category 1

PASS

Rearrange 2

windows to

existing

arrangement,

Category 1 & 2

both have 1

free space

Press

Rearrange All

button

AutoArrange() Add 1 window

to Category 1,

add 1 window

to Category 2,

rearrange both

Add 1 window

to Category 1,

add 1 window

to Category 2,

rearrange both,

hide category 1

PASS

Rearrange

window from

current group

Press

Rearrange

button

RearrangeCateg

ory(catIndex)

50% + 23:77

layout applied

to category

50% + 23:77

layout applied

to category

PASS

Add window to

non-existent

Category 8

Hotkey Ctrl +

Win + 8

AddtoGroup

(activeWindow,

7)

Create

Category 8, add

active window

to Category 8

Create

Category 8, add

active window

to Category 8

PASS

Add window to

existing

Category 8

Hotkey Ctrl +

Win + 8

AddtoGroup

(activeWindow,

7)

Category 8

window list

shows window

Category 8

window list

shows window

PASS

List windows

of Category 8

Press Category

#8 button

RefreshTable(7) Shows added

windows,

images, names

Shows added

windows,

images, names

PASS

Rename

Category 8 to

“Specials”

Rename button

at Category #8,

type name,

press Enter

windowgroups

[7].CategoryNa

me = “Specials”

Button with

Category #8

text changed to

Specials

Button with

Category #8

text changed to

Specials

PASS

Delete

“Specials”

Press Delete

button beside

“Specials”

windowgroups

[7] = null,

RefreshTable(7)

Remove

“Specials”

controls,

interface shows

no windows

Remove

“Specials”

controls,

interface shows

no windows

PASS

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 69

Update

Category 1

after closing all

4 windows

from Category

1

Close all

windows from

Category 1,

press Category

1 button to list

windows

RefreshTable(0

)

Two windows

still remained

in the interface

with empty

window

snapshots

Interface shows

no windows
FAIL

Close all

windows

Press Close

All button

CloseAll

Windows()

All windows

closed except

the interface

All windows

closed except

the interface

PASS

Close windows

from Category

2 which has

random

windows with a

Notepad with

unsaved

progress

Hotkey Ctrl +

Alt + 2,

confirm

CloseCat(1) Notepad asks

to save

progress,

Category 2

window closed,

Category 2 list

shows no

windows

Notepad asks to

save progress,

Category 2

windows

closed,

Category 2 list

shows no

windows

PASS

Kill all

windows

Press Kill All

button

KillAll

Windows()

All windows

closed except

the interface

All windows

closed except

the interface

PASS

Kill windows

from Category

5 which has

random

windows with a

Notepad with

unsaved

progress

Hotkey Ctrl +

Alt + Shift + 5,

confirm

KillCat(4) Category 5

windows

terminated,

Category 5 list

shows no

windows

Category 5

windows

terminated,

Category 5 list

shows no

windows

PASS

Make selected

window the

main window

of current

category

Click on Make

Active

Window

button of

desired

window

windowGroups

[catIndex].Main

Window =

newMain,

RearrangeCateg

ory(catIndex)

Selected

window

becomes main

window,

category

arranged

correctly

Selected

window

becomes main

window,

category

arranged

correctly

PASS

Swap active

window with

main window

of its category

Hotkey Win +

S

windowGroups

[catIndex].Main

Window =

newMain,

RearrangeCateg

ory(catIndex)

Active window

becomes main

window

instead,

category

arranged

correctly

Active window

becomes main

window

instead,

category

arranged

correctly

PASS

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 70

Swap active

window which

is not in any

category with

main window

Hotkey Win +

S

windowGroups

[catIndex].Main

Window =

newMain,

RearrangeCateg

ory(catIndex)

Error: The

selected

window does

not exist in any

category

Error: The

selected

window does

not exist in any

category

PASS

Turn off

AutoDock

mode

Hotkey Win +

Shift + Tab

Autodock =

false

Switch from on

to off, show

message

Switch from on

to off, show

message

PASS

Turn on

AutoDock

mode

Hotkey Win +

Shift + Tab

Autodock = true Switch from

off to on, show

message

Switch from off

to on, show

message

PASS

Dock first

window left

while in

AutoDock

Left Arrow

Key

SetWindowPos Window takes

half screen

width, full

screen height,

docked left side

Window takes

half screen

width, full

screen height,

docked left side

PASS

Dock second

window left

while in

AutoDock

Left Arrow

Key

SetWindowPos First and

second window

resized to half

screen width,

half screen

height, docked

left side. First

on top, second

below

First and

second window

resized to half

screen width,

half screen

height, docked

left side. First

on top, second

below

PASS

Dock third

window left

while in

AutoDock

Left Arrow

Key

SetWindowPos Left side has 3

windows

equally sized

Left side has 3

windows

equally sized

PASS

Dock a window

right while in

AutoDock

Right Arrow

Key

SetWindowPos Window takes

half screen

width, full

screen height,

docked right

side

Window takes

half screen

width, full

screen height,

docked right

side

PASS

Dock a window

middle while in

AutoDock

Up/Down

Arrow Key

SetWindowPos Left and right

side windows

resized 1/3 of

screen width

while retaining

arrangement,

current window

filled in middle

Left and right

side windows

resized 1/3 of

screen width

while retaining

arrangement,

current window

filled in middle

PASS

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 71

Dock window

to left while in

AutoDock,

taskbar set in

Left position

Left Arrow

Key

SetWindowPos Window

docked left

after the

taskbar

Window

docked left

behind the

taskbar

Needs

offset

Dock window

while

AutoDock OFF

Arrow Keys - Nothing

happens

Nothing

happens
PASS

Hide all

windows

Hotkey Win +

H

HideAll

Windows()

All windows

hidden

All windows

hidden
PASS

Hide windows

in Category 1

Hotkey

Alt + Shift + 1

HideCat(0) Windows in

Category #1

hidden

Windows in

Category #1

hidden

PASS

Close windows

in Category 1

which are

hidden

Press Close

Category

button

CloseCat(0) Windows in

Category #1

closed,

interface still

shows half of

windows

Windows in

Category #1

closed,

interface shows

no windows for

Category #1

Same

as

Update

prob.

Show all

windows

Hotkey Win +

G

ShowAll

Windows()

All windows

shown except

previously

hidden

windows

All windows

shown
Fix

hide

logic

Show windows

in Category 2

Hotkey Alt + 2 ShowCat(1) Hidden

windows not

shown

Windows in

Category #2

shown

Fix

hide

logic

Move current

window

Hotkey Shift +

Arrow Keys

MoveActive

Window(x)

Window moves

towards the

direction

pressed

Window moves

towards the

direction

pressed

PASS

Resize current

window

Hotkey Ctrl +

Shift + Up /

Down

ResizeActiveWi

ndow(x)

Window

resizes larger if

Up pressed,

smaller if

Down pressed

Window

resizes larger if

Up pressed,

smaller if

Down pressed

PASS

Rename

category

Press Rename

button

RenameCat

(name, index)

Textbox

appears, type

name, Enter.

Name changes.

Textbox

appears, type

name, Enter.

Name changes.

PASS

Starts up when

Windows starts

Check the

startup box

RegisterKey Automatically

starts

application

when Windows

loads

Automatically

starts

application

when Windows

loads

PASS

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 72

Appendix G – Project Proposal

INVESTIGATION OF HUMAN-COMPUTER INTERACTION USING ALGORITHMIC

APPLICATION AS A SOLUTION FOR THE WINDOW MANAGEMENT

LIMITATIONS FOUND IN DESKTOP ENVIRONMENTS WITH WINDOWS 7 AS AN

EXAMPLE

NICHOLAS W. W. H.

BSc. Computing (Hons.) [3+0]

UOG ID: XXXXXXXXX

1.0 Project Overview

The purpose of this project is to improve the user’s control over windows on desktop

environments such as Aero in Windows 7. An application will be implemented to run in the

background and provide hotkey functionality based on the Windows API for users to

manipulate and organize their windows on the screen with ease.

The main function of the application is to calculate the position of the windows using

algorithms and resize them to fit to the screen without obstructing each other using hotkeys. The

algorithm must account for readability when determining the position and size of windows. This

allows the user to quickly keep track of all windows on the screen in the most optimal manner

without having to manage them one-by-one, allowing them to multi-task effectively and keep

track of all windows at once without effort. The user will also be able to move and resize

windows using hotkeys which were not originally provided by the desktop environment to

control individual or all windows. The application may contain a secondary function to transform

windows into small picture snapshots which will be presented in an overlay. This will act as a

virtual space for managing windows without clutter as a solution for small screens.

Start Date: 25th September 2013 End Date: 24th April 2014

Keywords: hotkey, manipulate, organize, windows, screen, algorithms, multi-task

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 73

2.0 Aim

To study the effectiveness of multi-tasking and human-computer interaction using a background

application making use of hotkeys and algorithms to easily manipulate windows on a desktop

environment.

3.0 Objectives

3.1 Key Research Areas

3.1.1 Identify problems regarding the limitations of window management to users.

3.1.2 Research on HCI usability theories and layouts suitable for desktop environments.

 3.1.3 Research on HCI regarding the practical usability of hotkeys and its efficiency.

 3.1.4 Perform questionnaires to investigate user preferences on screen layouts at home

 and office environments.

3.1.5 Research on implementation methods of Windows API for window manipulation.

 3.1.6 Analyze user interaction and behaviour on window manipulation.

 3.1.7 Analyze Windows API usage and HCI factors for prototype and algorithm design.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 74

3.2 Development

3.2.1 Requirements Planning

 3.2.1.1 Develop and finalize project management plans.

3.2.1.2 Perform research on the key research areas regarding HCI and gather

high-level requirements based on results.

3.2.1.3 Produce behavioural UML use case diagram on user interaction.

3.2.2 Prototype & Algorithm Design

3.2.2.1 Design the prototype’s interface and produce screen layouts.

3.2.2.2 Design a flowchart of processes for the prototype’s usage of the algorithm.

 3.2.2.3 Design an algorithm to manipulate windows according to user and HCI

 data.

3.2.3 Construction

 3.2.3.1 Revise and develop a working prototype.

 3.2.3.2 Test the prototype involving users and gather statistical user input and

 HCI data.

3.2.4 Implementation

 3.2.4.1 Final testing and integration of prototype as a working application.

 3.2.4.2 Full documentation and presentation of the project.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 75

4.0 Functional Requirements

4.1 Primary Functions

 Rearrange all windows on screen with a hotkey combination.

 Move and resize active window with hotkeys.

 Automatically dock multiple windows to a portion of a screen with hotkeys by resizing

the windows as they are being docked.

4.2 Secondary Functions

 Turn all windows into snapshots in an overlay.

 Group windows into categories.

 Provide an interface for all window groups with snapshots and controls.

 Rearrange, close, show and hide windows by group.

 Rename window groups.

5.0 Non-Functional Requirements

5.1 Readability

The algorithm which resizes and positions the windows must account for readability. If the

window is too small, it should take appropriate measures such as minimizing inactive windows.

5.2 Accessibility

It must use easy-to-reach hotkeys and not interfere with the original Windows hotkey

functionality. The application will provide ease-of-use with some options such as the choice of

running the application at startup and the rebinding of hotkeys.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 76

6.0 Legal, Social, Ethical and Professional Concerns

This project will only involve the development of a standalone background application which

integrates to the desktop environment without modifying Windows 7 and its components;

therefore, it should not violate any proprietary license or copyright laws.

7.0 Planning (see appendix A)

The approach for this project will follow the Rapid Application Development methodology to

gather the requirements dynamically while highly focused on evolutionary prototyping and

testing due to high user involvement when creating algorithms for human-computer interaction.

Due to the fixed deadline, the project will be controlled using timeboxing together with the

MoSCoW method depending on the deliverables. The project may encounter vague

complications such as the inability to acquire solid information during research and tests for

user-friendliness, inability to solve algorithmic problems, and commitment to other classes in the

degree course which may extend the duration of a work process. These risks will be managed by

reducing the project scope through the MoSCoW method to fit into the timebox allocated.

8.0 Initial References

Du Toit, C. (2013). Rapid Application Development Techniques. [PowerPoint slides]. Presented

for Week 4 of the XXXXXXXX Subject in University of Greenwich.

Microsoft Developer Network. (2013). Window Functions (Windows). [online] Available at:

http://msdn.microsoft.com/en-us/library/ff468919(v=vs.85).aspx [Accessed: 23 Sep 2013].

Signatures Redacted

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 77

9.0 Proposal Appendix – RAD Model with Timebox Plan

Finalize Project

Management Plans

5/10/2013

MUST

Identify Problems &

Basic Requirements

10/10/2013

MUST

Detailed HCI &

Requirements Analysis

7/11/2013

MUST

Conduct

Questionnaire

24/10/2013

MUST

Iterative

Design & Construction

First Iteration: 10/1/2014

Last Iteration: 10/3/2014

Final Testing

& Integration

5/4/2014

MUST

Full Documentation

& Presentation Slides

23/4/2014

MUST

Presentation

24/4/2014

MUST

Use Case

Diagram

10/11/2013

SHOULD

Screen Layout

MUST

Flowchart

COULD

Algorithm

MUST

Prototype

MUST

Test Plan

MUST

User Acceptance

MUST

Requirements Planning: 10/11/2013

Implementation: 24/4/2014

Integration on Older

Versions of Windows

23/4/2014

WON’T

Integration on Other

Platforms

23/4/2014

WON’T

(45 days)

(120 days)

(46 days)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 78

Appendix H – Developed Application Screenshots

Figure H1: Main Screen

Figure H2: Implemented 50% + 23:77 Layout

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 79

Figure H3: List of Windows & Categories in Interface

Figure H4: Category Controls & Renaming

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 80

Figure H5: Closing Groups of Windows with Confirmation

Figure H6: Auto-docking Windows in 3 Divisions

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 81

Appendix I – Developed Application Source Code

Hotkey.cs Class

// Credits to Curtis Rutland for this Hotkey class from a tutorial forum post.

// Rutland, C. (2010). Global Hotkeys - C# Tutorials. [online] Dream.In.Code.
// Available at: http://www.dreamincode.net/forums/topic/180436-global-hotkeys/
// [Accessed 3 Mar 2014].

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace WindowsFormsApplication1
{
 class Hotkey
 {
 [DllImport("user32.dll")]
 private static extern bool RegisterHotKey(IntPtr hWnd, int id, int fsModifiers,
int vk);

 [DllImport("user32.dll")]
 private static extern bool UnregisterHotKey(IntPtr hWnd, int id);

 public int modifier { get; set; }
 public Keys key { get; set; }
 private IntPtr hWnd;
 private int id;

 public Hotkey(int modifier, Keys key, Form form)
 {
 this.modifier = modifier;
 this.key = key;
 this.hWnd = form.Handle;
 id = this.GetHashCode();
 }

 public override int GetHashCode()
 {
 // Generates a unique ID for the hotkey
 return modifier ^ (int)key ^ hWnd.ToInt32();
 }

 public bool Register()
 {
 // Register as global hotkey
 return RegisterHotKey(hWnd, id, modifier, (int)key);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 82

 }

 public bool Unregister()
 {
 // Unregister
 return UnregisterHotKey(hWnd, id);
 }
 }

 public static class HotkeyConstants
 {
 //modifiers
 public const int NOMOD = 0x0000;
 public const int ALT = 0x0001;
 public const int CTRL = 0x0002;
 public const int SHIFT = 0x0004;
 public const int WIN = 0x0008;

 //windows message id for hotkey
 public const int WM_HOTKEY_MSG_ID = 0x0312;
 }
}

Window.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace WindowsFormsApplication1
{
 class Window
 {
 public IntPtr Handle { get; set; }
 public int xPos { get; set; }
 public int yPos { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }
 public string Title { get; set; }

 public Window(IntPtr hWnd, string t, int x, int y, int w, int h)
 {
 Handle = hWnd;
 Title = t;
 xPos = x;
 yPos = y;
 Width = w;
 Height = h;
 }
 }
}

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 83

Category.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace WindowsFormsApplication1
{
 class Category
 {
 public string CategoryName { get; set; }
 public Window MainWindow { get; set; }

 private List<Window> Windows = new List<Window>();

 public Category(string name, Window window, int capacity)
 {
 CategoryName = name;
 MainWindow = window;
 Windows.Capacity = capacity;
 }

 public Category(string name)
 {
 CategoryName = name;
 }

 public Category(string name, int capacity)
 {
 CategoryName = name;
 Windows.Capacity = capacity;
 }

 public bool AddWindow(Window window)
 {
 if (isFull() || hasWindow(window))
 {
 return false;
 }
 else
 {
 Windows.Add(window);
 return true;
 }
 }

 public bool AddtoFirst(Window window)
 {
 if (isFull() || hasWindow(window))
 {
 return false;
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 84

 else
 {
 Windows.Reverse();
 Windows.Add(window);
 Windows.Reverse();
 return true;
 }
 }

 public void RemoveWindow(Window window)
 {
 //Windows.Remove(window);
 Windows.RemoveAll(w => w.Handle == window.Handle);
 if (isMainWindow(window)) { SetDefaultMainWindow(); }
 }

 public void RemoveAt(int index)
 {
 Window temp = Windows.ElementAt(index);
 Windows.RemoveAt(index);
 if (isMainWindow(temp)) { SetDefaultMainWindow(); }
 }

 public void SetDefaultMainWindow()
 {
 if (!isEmpty())
 {
 MainWindow = Windows.ElementAt(0);
 }
 }

 public void Clear()
 {
 Windows.Clear();
 }

 public bool isFull()
 {
 if (Windows.Count == Windows.Capacity) { return true; }

 else { return false; }
 }

 public bool isEmpty()
 {
 if (!Windows.Any()) { return true; } else { return false; }
 }

 public bool isMainWindow(Window window)
 {
 if (MainWindow == null) { return false; }
 if (window.Handle == MainWindow.Handle) { return true; }
 return false;
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 85

 public bool hasWindow(Window window)
 {
 for (int i = 0; i < Windows.Count; i++)
 {
 if (Windows[i].Handle == window.Handle) { return true; }
 }
 return false;
 }

 public int numberofWindows()
 {
 return Windows.Count;
 }

 public Window GetWindowAt(int x)
 {
 return Windows.ElementAt(x);
 }

 public IntPtr GetHandleAt(int x)
 {
 return Windows.ElementAt(x).Handle;
 }

 public void SetCapacity(int c)
 {
 Windows.Capacity = c;
 }
 }
}

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 86

DataHandler.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Xml.Linq;

namespace WindowsFormsApplication1
{
 class DataHandler
 {
 private XDocument Document;

 public DataHandler(XDocument doc)
 {
 Document = doc;
 }

 public static void InitializeData() {
 XDocument hotkeyData = new XDocument(
 new XDeclaration("1.0","utf8","yes"),
 new XComment("Keybinds for Window Management Tool"),

 new XElement("Hotkeys",
 new XElement("MoveUp",
 new XElement("Modifier", HotkeyConstants.SHIFT.ToString()),
 new XElement("Key", Keys.Up.ToString())
),
 new XElement("MoveDown",
 new XElement("Modifier", HotkeyConstants.SHIFT.ToString()),
 new XElement("Key", Keys.Down.ToString())
),
 new XElement("MoveLeft",
 new XElement("Modifier", HotkeyConstants.SHIFT.ToString()),
 new XElement("Key", Keys.Left.ToString())
),
 new XElement("MoveRight",
 new XElement("Modifier", HotkeyConstants.SHIFT.ToString()),
 new XElement("Key", Keys.Right.ToString())
),
 new XElement("SizeUp",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.Up.ToString())
),
 new XElement("SizeDown",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.Down.ToString())
),
 new XElement("ArrangeAll",
 new XElement("Modifier", (HotkeyConstants.WIN).ToString()),

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 87

 new XElement("Key", Keys.A.ToString())
),
 new XElement("ArrangeCategory1",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D1.ToString())
),
 new XElement("ArrangeCategory2",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D2.ToString())
),
 new XElement("ArrangeCategory3",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("ArrangeCategory4",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("ArrangeCategory5",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("ArrangeCategory6",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D6.ToString())
),
 new XElement("ArrangeCategory7",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("ArrangeCategory8",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("ArrangeCategory9",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("CloseAll",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.End.ToString())
),
 new XElement("CloseCategory1",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D1.ToString())

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 88

),
 new XElement("CloseCategory2",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D2.ToString())
),
 new XElement("CloseCategory3",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("CloseCategory4",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("CloseCategory5",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("CloseCategory6",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D6.ToString())
),
 new XElement("CloseCategory7",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("CloseCategory8",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("CloseCategory9",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("KillAll",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.End.ToString())
),
 new XElement("KillCategory1",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D1.ToString())
),
 new XElement("KillCategory2",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D2.ToString())
),

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 89

 new XElement("KillCategory3",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("KillCategory4",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("KillCategory5",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("KillCategory6",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D6.ToString())
),
 new XElement("KillCategory7",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("KillCategory8",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("KillCategory9",
 new XElement("Modifier", (HotkeyConstants.CTRL +
HotkeyConstants.ALT + HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("AddToCategory1",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D1.ToString())
),
 new XElement("AddToCategory2",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D2.ToString())
),
 new XElement("AddToCategory3",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("AddToCategory4",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("AddToCategory5",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("AddToCategory6",

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 90

 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D6.ToString())
),
 new XElement("AddToCategory7",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("AddToCategory8",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("AddToCategory9",
 new XElement("Modifier", (HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("AutodockToggle",
 new XElement("Modifier", (HotkeyConstants.SHIFT +
HotkeyConstants.CTRL).ToString()),
 new XElement("Key", Keys.Tab.ToString())
),
 new XElement("DockUp",
 new XElement("Modifier", (HotkeyConstants.NOMOD).ToString()),
 new XElement("Key", Keys.Up.ToString())
),
 new XElement("DockDown",
 new XElement("Modifier", (HotkeyConstants.NOMOD).ToString()),
 new XElement("Key", Keys.Down.ToString())
),
 new XElement("DockLeft",
 new XElement("Modifier", (HotkeyConstants.NOMOD).ToString()),
 new XElement("Key", Keys.Left.ToString())
),
 new XElement("DockRight",
 new XElement("Modifier", (HotkeyConstants.NOMOD).ToString()),
 new XElement("Key", Keys.Right.ToString())
),
 new XElement("DockAlt",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString())
),
 new XElement("ShowAll",
 new XElement("Modifier", (HotkeyConstants.WIN).ToString()),
 new XElement("Key", Keys.G.ToString())
),
 new XElement("ShowCategory1",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D1.ToString())
),
 new XElement("ShowCategory2",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D2.ToString())
),
 new XElement("ShowCategory3",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("ShowCategory4",

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 91

 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("ShowCategory5",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("ShowCategory6",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D6.ToString())
),
 new XElement("ShowCategory7",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("ShowCategory8",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("ShowCategory9",
 new XElement("Modifier", (HotkeyConstants.ALT).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("HideAll",
 new XElement("Modifier", (HotkeyConstants.WIN).ToString()),
 new XElement("Key", Keys.H.ToString())
),
 new XElement("HideCategory1",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D1.ToString())
),
 new XElement("HideCategory2",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D2.ToString())
),
 new XElement("HideCategory3",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D3.ToString())
),
 new XElement("HideCategory4",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D4.ToString())
),
 new XElement("HideCategory5",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D5.ToString())
),
 new XElement("HideCategory6",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D6.ToString())

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 92

),
 new XElement("HideCategory7",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D7.ToString())
),
 new XElement("HideCategory8",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D8.ToString())
),
 new XElement("HideCategory9",
 new XElement("Modifier", (HotkeyConstants.ALT +
HotkeyConstants.SHIFT).ToString()),
 new XElement("Key", Keys.D9.ToString())
),
 new XElement("Restore",
 new XElement("Modifier", (HotkeyConstants.WIN).ToString()),
 new XElement("Key", Keys.W.ToString())
),
 new XElement("SwapMainWindow",
 new XElement("Modifier", (HotkeyConstants.WIN).ToString()),
 new XElement("Key", Keys.S.ToString())
)
));
 hotkeyData.Save("hotkeys.xml");
 }

 public Keys GetKey(string element)
 {
 var query = Document.Descendants(element).Select(s => new
 {
 Key = s.Element("Key").Value
 }).FirstOrDefault();
 string keyString = query.Key;
 return (Keys)Enum.Parse(typeof(Keys), keyString);
 }

 public int GetMod(string element)
 {
 var query = Document.Descendants(element).Select(s => new
 {
 Modifier = s.Element("Modifier").Value
 }).FirstOrDefault();
 string modString = query.Modifier;

 return int.Parse(modString);
 }
 }
}

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 93

Form1.cs (Main Controller) Class

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Xml.Linq;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 // WINDOW MANAGEMENT TOOL 2014
 // Coded by: Nicholas W. W. H (RailKill)
 // This application is created as part of a disseration for
 // University of Greenwich's BSc. Computing programme.

 // DO NOT DISTRIBUTE WITHOUT PERMISSION

 // CREDITS:
 // Credits to Paul Dinham, Curtis Rutland, Bart De Smet and Jani Hartikainen for
 // providing online tutorials and solutions which were adapted and used in the
 // development of this application. Full credits were given and cited on their
 // corresponding code sections.

 // SPECIAL THANKS TO EVAN BROOKS
 // A deviantART user named 'brsev' for creating the Token icon set which was used
 // in this application, free for personal use under the Creative Commons License.
 //
 // Brooks, E. (2009). Token by brsev on deviantART.
 // Available at: http://brsev.deviantart.com/art/Token-128429570
 // [Accessed: 21 Jan 2014].

 // NOTES:
 // Prepare for messy code, no time to clean up, too busy developing.
 // Some functions belong in separate classes, do it next time, for reusability.

 [StructLayout(LayoutKind.Sequential)]
 public struct RECT
 {
 public int Left, Top, Right, Bottom;

 public RECT(int left, int top, int right, int bottom)
 {
 Left = left;
 Top = top;
 Right = right;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 94

 Bottom = bottom;
 }

 public RECT(System.Drawing.Rectangle r) : this(r.Left, r.Top, r.Right,
r.Bottom) { }

 public int X
 {
 get { return Left; }
 set { Right -= (Left - value); Left = value; }
 }

 public int Y
 {
 get { return Top; }
 set { Bottom -= (Top - value); Top = value; }
 }

 public int Height
 {
 get { return Bottom - Top; }
 set { Bottom = value + Top; }
 }

 public int Width
 {
 get { return Right - Left; }
 set { Right = value + Left; }
 }

 public System.Drawing.Point Location
 {
 get { return new System.Drawing.Point(Left, Top); }
 set { X = value.X; Y = value.Y; }
 }

 public System.Drawing.Size Size
 {
 get { return new System.Drawing.Size(Width, Height); }
 set { Width = value.Width; Height = value.Height; }
 }

 public static implicit operator System.Drawing.Rectangle(RECT r)
 {
 return new System.Drawing.Rectangle(r.Left, r.Top, r.Width, r.Height);
 }

 public static implicit operator RECT(System.Drawing.Rectangle r)
 {
 return new RECT(r);
 }

 public static bool operator ==(RECT r1, RECT r2)
 {
 return r1.Equals(r2);
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 95

 public static bool operator !=(RECT r1, RECT r2)
 {
 return !r1.Equals(r2);
 }

 public bool Equals(RECT r)
 {
 return r.Left == Left && r.Top == Top && r.Right == Right && r.Bottom ==
Bottom;
 }

 public override bool Equals(object obj)
 {
 if (obj is RECT)
 return Equals((RECT)obj);
 else if (obj is System.Drawing.Rectangle)
 return Equals(new RECT((System.Drawing.Rectangle)obj));
 return false;
 }

 public override int GetHashCode()
 {
 return ((System.Drawing.Rectangle)this).GetHashCode();
 }

 public override string ToString()
 {
 return string.Format(System.Globalization.CultureInfo.CurrentCulture,
"{{Left={0},Top={1},Right={2},Bottom={3}}}", Left, Top, Right, Bottom);
 }
 }

 [StructLayout(LayoutKind.Sequential)]
 struct TITLEBARINFO
 {
 public const int CCHILDREN_TITLEBAR = 5;
 public uint cbSize;
 public RECT rcTitleBar;
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = CCHILDREN_TITLEBAR + 1)]
 public uint[] rgstate;
 }

 [DllImport("user32.dll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool GetTitleBarInfo(IntPtr hwnd, ref TITLEBARINFO ti);

 [DllImport("user32.dll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool SetWindowPos(IntPtr hWnd, IntPtr hWndInsertAfter, int X, int Y,
int cx, int cy, int wFlags);
 const short SWP_NOMOVE = 0X2;
 const short SWP_NOSIZE = 1;
 const short SWP_NOZORDER = 0X4;
 const int SWP_SHOWWINDOW = 0x0040;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 96

 [DllImport("user32.dll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool IsWindowVisible(IntPtr hWnd);

 [DllImport("user32.dll", ExactSpelling = true)]
 static extern IntPtr GetAncestor(IntPtr hwnd, uint gaFlags);
 const uint GA_PARENT = 1;
 const uint GA_ROOT = 2;
 const uint GA_ROOTOWNER = 3;

 [DllImport("user32.dll", SetLastError = true)]
 static extern IntPtr GetWindow(IntPtr hWnd, GetWindow_Cmd uCmd);

 enum GetWindow_Cmd : uint
 {
 GW_HWNDFIRST = 0,
 GW_HWNDLAST = 1,
 GW_HWNDNEXT = 2,
 GW_HWNDPREV = 3,
 GW_OWNER = 4,
 GW_CHILD = 5,
 GW_ENABLEDPOPUP = 6
 }

 [DllImport("user32.dll")]
 static extern IntPtr GetLastActivePopup(IntPtr hWnd);

 [DllImport("user32.dll")]
 private static extern IntPtr GetForegroundWindow();

 [DllImport("user32.dll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool SetForegroundWindow(IntPtr hWnd);

 [DllImport("user32.dll")]
 [return: MarshalAs(UnmanagedType.Bool)]
 static extern bool EnumWindows(EnumWindowsProc lpEnumFunc, IntPtr lParam);

 private delegate bool EnumWindowsProc(IntPtr hWnd, IntPtr lParam);

 [DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]
 static extern int GetWindowText(IntPtr hWnd, StringBuilder lpString, int
nMaxCount);

 [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)]
 static extern int GetWindowTextLength(IntPtr hWnd);

 [DllImport("user32.dll")]
 public static extern bool GetWindowRect(IntPtr hwnd, ref RECT rectangle);

 [DllImport("user32.dll", CharSet = CharSet.Auto)]
 static extern IntPtr SendMessage(IntPtr hWnd, UInt32 Msg, IntPtr wParam, IntPtr
lParam);

 [DllImport("user32.dll", SetLastError = true)]
 static extern uint GetWindowThreadProcessId(IntPtr hWnd, out int processId);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 97

 [DllImport("dwmapi.dll", SetLastError = true)]
 static extern int DwmRegisterThumbnail(IntPtr dest, IntPtr src, out IntPtr
thumb);

 [DllImport("dwmapi.dll")]
 static extern int DwmUnregisterThumbnail(IntPtr thumb);

 [DllImport("dwmapi.dll")]
 static extern int DwmUpdateThumbnailProperties(IntPtr hThumb, ref
DWM_THUMBNAIL_PROPERTIES props);

 [StructLayout(LayoutKind.Sequential)]
 internal struct DWM_THUMBNAIL_PROPERTIES
 {
 public int dwFlags;
 public RECT rcDestination;
 public RECT rcSource;
 public byte opacity;
 public bool fVisible;
 public bool fSourceClientAreaOnly;
 }

 // GET ICON IMPORTS AND CONSTANTS //
 // This section is imported to be used as part of Hartikainen's (2007) code.
 // See GetIcon function for more.
 public const int GCL_HICONSM = -34;
 public const int GCL_HICON = -14;

 public const int ICON_SMALL = 0;
 public const int ICON_BIG = 1;
 public const int ICON_SMALL2 = 2;

 public const int WM_GETICON = 0x7F;

 public static IntPtr GetClassLongPtr(IntPtr hWnd, int nIndex)
 {
 if (IntPtr.Size > 4)
 return GetClassLongPtr64(hWnd, nIndex);
 else
 return new IntPtr(GetClassLongPtr32(hWnd, nIndex));
 }

 [DllImport("user32.dll", EntryPoint = "GetClassLong")]
 public static extern uint GetClassLongPtr32(IntPtr hWnd, int nIndex);

 [DllImport("user32.dll", EntryPoint = "GetClassLongPtr")]
 public static extern IntPtr GetClassLongPtr64(IntPtr hWnd, int nIndex);

 [DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = false)]
 static extern IntPtr SendMessage(IntPtr hWnd, int Msg, int wParam, int lParam);
 // ICON IMPORTS AND CONSTANTS END //

 [DllImport("user32.dll")]
 static extern bool ShowWindow(IntPtr hWnd, int nCmdShow);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 98

 [DllImport("user32.dll", SetLastError = true)]
 static extern UInt32 GetWindowLong(IntPtr hWnd, int nIndex);
 const int GWL_EXSTYLE = -0x14;
 const int WS_EX_TOOLWINDOW = 0x0080;
 const int STATE_SYSTEM_INVISIBLE = 0x8000;

 const UInt32 WM_CLOSE = 0x0010;

 const int SW_HIDE = 0;
 const int SW_MAXIMIZE = 3;
 const int SW_SHOW = 5;
 const int SW_RESTORE = 9;

 static readonly int DWM_TNP_VISIBLE = 0x8;
 static readonly int DWM_TNP_OPACITY = 0x4;
 static readonly int DWM_TNP_RECTDESTINATION = 0x1;

 const int CATEGORY_LIMIT = 9;
 const int LAYOUT_LIMIT = 4;

 int catIndex = 0;
 int currentcIndex = 0;
 int screenWidth = Screen.PrimaryScreen.WorkingArea.Width;
 int screenHeight = Screen.PrimaryScreen.WorkingArea.Height;
 Category[] windowGroups = new Category[CATEGORY_LIMIT];
 Category tempGroup = new Category("Temporary");
 Category hiddenGroup = new Category("Hidden");
 List<RadioButton> activeButtons = new List<RadioButton>();

 // General Keys //
 private Hotkey autoDockKey, dockUp, dockDown, dockLeft, dockRight,
 dockAltUp, dockAltDown, dockAltLeft, dockAltRight, swapMainKey, restoreKey;
 // Move Window Keys //
 private Hotkey moveLeftKey, moveDownKey, moveUpKey, moveRightKey;
 // Resize Window Keys //
 private Hotkey sizeUpKey, sizeDownKey;
 // Arrange Keys //
 private Hotkey arrangeKey;
 private Hotkey[] arrange = new Hotkey[9];
 // Add Category Keys //
 private Hotkey[] addCat = new Hotkey[9];
 // Close Keys //
 private Hotkey closeKey;
 private Hotkey[] close = new Hotkey[9];
 // Kill Keys //
 private Hotkey killKey;
 private Hotkey[] kill = new Hotkey[9];
 // Show Keys //
 private Hotkey showKey;
 private Hotkey[] show = new Hotkey[9];
 // Hide Keys
 private Hotkey hideKey;
 private Hotkey[] hide = new Hotkey[9];

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 99

 private IntPtr[] preview = { IntPtr.Zero, IntPtr.Zero, IntPtr.Zero,
IntPtr.Zero };
 private bool autoDock = false;
 private Category[] adWindows = new Category[3];
 private Form2 settingsForm = new Form2();
 private DataHandler data;

 public Form1()
 {
 InitializeComponent();
 try
 {
 data = new DataHandler(XDocument.Load("hotkeys.xml"));
 }
 catch (Exception e)
 {
 try
 {
 DataHandler.InitializeData();
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error: " + ex + "\n\nUnable to initialize hotkey
data. Try running as Administrator.");
 System.Environment.Exit(1);
 }
 }
 finally
 {
 if (data == null) { data = new
DataHandler(XDocument.Load("hotkeys.xml")); }
 }

 // Set Hidden Group Capacity
 hiddenGroup.SetCapacity(100);
 tempGroup.SetCapacity(100);

 // Assign General Keys //
 autoDockKey = new Hotkey(data.GetMod("AutodockToggle"),
data.GetKey("AutodockToggle"), this);
 dockUp = new Hotkey(data.GetMod("DockUp"), data.GetKey("DockUp"), this);
 dockDown = new Hotkey(data.GetMod("DockDown"), data.GetKey("DockDown"),
this);
 dockLeft = new Hotkey(data.GetMod("DockLeft"), data.GetKey("DockLeft"),
this);
 dockRight = new Hotkey(data.GetMod("DockRight"), data.GetKey("DockRight"),
this);

 dockAltUp = new Hotkey(data.GetMod("DockAlt"), data.GetKey("DockUp"), this);
 dockAltDown = new Hotkey(data.GetMod("DockAlt"), data.GetKey("DockDown"),
this);
 dockAltLeft = new Hotkey(data.GetMod("DockAlt"), data.GetKey("DockLeft"),
this);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 100

 dockAltRight = new Hotkey(data.GetMod("DockAlt"), data.GetKey("DockRight"),
this);
 restoreKey = new Hotkey(data.GetMod("Restore"), data.GetKey("Restore"),
this);

 // Assign Move Window Keys //
 moveUpKey = new Hotkey(data.GetMod("MoveUp"), data.GetKey("MoveUp"), this);
 moveDownKey = new Hotkey(data.GetMod("MoveDown"), data.GetKey("MoveDown"),
this);
 moveLeftKey = new Hotkey(data.GetMod("MoveLeft"), data.GetKey("MoveLeft"),
this);
 moveRightKey = new Hotkey(data.GetMod("MoveRight"), data.GetKey("MoveRight"),
this);

 // Assign Size Keys //
 sizeUpKey = new Hotkey(data.GetMod("SizeUp"), data.GetKey("SizeUp"), this);
 sizeDownKey = new Hotkey(data.GetMod("SizeUp"), data.GetKey("SizeDown"),
this);

 // Assign Other Keys //
 arrangeKey = new Hotkey(data.GetMod("ArrangeAll"), data.GetKey("ArrangeAll"),
this);
 closeKey = new Hotkey(data.GetMod("CloseAll"), data.GetKey("CloseAll"),
this);
 killKey = new Hotkey(data.GetMod("KillAll"), data.GetKey("KillAll"), this);
 swapMainKey = new Hotkey(data.GetMod("SwapMainWindow"),
data.GetKey("SwapMainWindow"), this);
 showKey = new Hotkey(data.GetMod("ShowAll"), data.GetKey("ShowAll"), this);
 hideKey = new Hotkey(data.GetMod("HideAll"), data.GetKey("HideAll"), this);

 for (int i = 0; i < CATEGORY_LIMIT; i++)
 {
 int j = i + 1;
 arrange[i] = new Hotkey(data.GetMod("ArrangeCategory" + j),
data.GetKey("ArrangeCategory" + j), this);
 addCat[i] = new Hotkey(data.GetMod("AddToCategory" + j),
data.GetKey("AddToCategory" + j), this);
 close[i] = new Hotkey(data.GetMod("CloseCategory" + j),
data.GetKey("CloseCategory" + j), this);
 kill[i] = new Hotkey(data.GetMod("KillCategory" + j),
data.GetKey("KillCategory" + j), this);
 show[i] = new Hotkey(data.GetMod("ShowCategory" + j),
data.GetKey("ShowCategory" + j), this);
 hide[i] = new Hotkey(data.GetMod("HideCategory" + j),
data.GetKey("HideCategory" + j), this);
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // Register all the hotkeys
 autoDockKey.Register();

 restoreKey.Register();

 moveUpKey.Register();

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 101

 moveDownKey.Register();
 moveLeftKey.Register();
 moveRightKey.Register();
 sizeUpKey.Register();
 sizeDownKey.Register();

 arrangeKey.Register();
 closeKey.Register();
 killKey.Register();
 swapMainKey.Register();
 showKey.Register();
 hideKey.Register();

 for (int i = 0; i < CATEGORY_LIMIT; i++)
 {
 arrange[i].Register();
 addCat[i].Register();
 close[i].Register();
 kill[i].Register();
 show[i].Register();
 hide[i].Register();
 }
 }

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)
 {
 // Unregister all the hotkeys
 autoDockKey.Unregister();
 restoreKey.Unregister();

 moveUpKey.Unregister();
 moveDownKey.Unregister();
 moveLeftKey.Unregister();
 moveRightKey.Unregister();
 sizeUpKey.Unregister();
 sizeDownKey.Unregister();

 arrangeKey.Unregister();
 closeKey.Unregister();
 killKey.Unregister();
 swapMainKey.Unregister();
 showKey.Unregister();
 hideKey.Unregister();

 for (int i = 0; i < CATEGORY_LIMIT; i++)
 {
 arrange[i].Unregister();
 addCat[i].Unregister();
 close[i].Unregister();
 kill[i].Unregister();
 show[i].Unregister();
 hide[i].Unregister();
 }

 if (autoDock)
 {

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 102

 dockUp.Unregister();
 dockDown.Unregister();
 dockLeft.Unregister();
 dockRight.Unregister();
 dockAltUp.Unregister();
 dockAltDown.Unregister();
 dockAltLeft.Unregister();
 dockAltRight.Unregister();
 }

 }

 private void Form1_Resize(object sender, EventArgs e)
 {
 if (this.WindowState == FormWindowState.Minimized)
 {
 this.Hide();
 notifyIcon.Visible = true;
 notifyIcon.ShowBalloonTip(2000);
 }
 }

 private void Restore()
 {
 this.Show();
 this.WindowState = FormWindowState.Maximized;
 notifyIcon.Visible = false;
 RefreshTable(catIndex);
 }

 private void notifyIcon_MouseDoubleClick(object sender, MouseEventArgs e)
 {
 Restore();
 }
 private void restoreToolStripMenuItem_Click(object sender, EventArgs e)
 {
 Restore();
 }

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void btnCloseAll_Click(object sender, EventArgs e)
 {
 DialogResult result = MessageBox.Show("Are you sure you want to close ALL
windows?", "Confirmation", MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if(result == DialogResult.OK)
 {
 this.WindowState = FormWindowState.Minimized;
 CloseAllWindows();
 }
 }

 private void btnKillAll_Click(object sender, EventArgs e)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 103

 {
 DialogResult result = MessageBox.Show("Are you sure you want to kill ALL
processes? Unsaved progress will be lost.", "Confirmation", MessageBoxButtons.OKCancel,
MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 this.WindowState = FormWindowState.Minimized;
 KillAllWindows();
 }
 }

 private bool IsAltTabWindow(IntPtr hwnd)
 {
 // Credits to Paul Dinham from Stack Overflow forums for providing C++ source.
 // Code was adapted to work in this particular C# application.

 // Dinham, P. (2011). c++ - Why does EnumWindows return more windows than I
expected?, Stack Overflow.
 // Available at: http://stackoverflow.com/questions/7277366/why-does-
enumwindows-return-more-windows-than-i-expected
 // [Accessed: 18 Dec 2013].

 TITLEBARINFO ti = new TITLEBARINFO();
 IntPtr hwndTry, hwndWalk = IntPtr.Zero;

 // If the window is hidden, it is not a real window.
 if (!IsWindowVisible(hwnd))
 return false;

 // If it's this application window, then just ignore it altogether.
 if (hwnd == this.Handle)
 return false;

 hwndTry = GetAncestor(hwnd, GA_ROOTOWNER);
 while (hwndTry != hwndWalk)
 {
 hwndWalk = hwndTry;
 hwndTry = GetLastActivePopup(hwndWalk);
 if (IsWindowVisible(hwndTry))
 break;
 }
 if (hwndWalk != hwnd)
 return false;

 // the following removes some task tray programs and "Program Manager"
 ti.cbSize = (uint)Marshal.SizeOf(ti);
 GetTitleBarInfo(hwnd, ref ti);
 if ((ti.rgstate[0] & STATE_SYSTEM_INVISIBLE) != 0)
 return false;

 // Tool windows should not be displayed either, these do not appear in the
 // task bar.
 if ((GetWindowLong(hwnd, GWL_EXSTYLE) & WS_EX_TOOLWINDOW) != 0)
 return false;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 104

 return true;
 }

 private void AutoArrange()
 {
 currentcIndex = 0;
 EnumWindows(new EnumWindowsProc(RearrangeWindow), IntPtr.Zero);
 }

 private void CloseAllWindows()
 {
 this.WindowState = FormWindowState.Minimized;
 EnumWindows(new EnumWindowsProc(CloseAll), IntPtr.Zero);
 RefreshTable(catIndex);
 }

 private void KillAllWindows()
 {
 EnumWindows(new EnumWindowsProc(KillAll), IntPtr.Zero);
 RefreshTable(catIndex);
 }

 private void ShowAllWindows()
 {
 this.WindowState = FormWindowState.Minimized;
 EnumWindows(new EnumWindowsProc(ShowAll), IntPtr.Zero);
 }

 private void HideAllWindows()
 {
 EnumWindows(new EnumWindowsProc(HideAll), IntPtr.Zero);
 }

 private bool ZOrderAdd(IntPtr hWnd, IntPtr lParam)
 {
 if (IsAltTabWindow(hWnd))
 {
 // Add windows to temporary group for determining z-order in auto-dock.
 tempGroup.AddWindow(CreateWindow(hWnd));
 }
 return true;
 }

 private bool CloseAll(IntPtr hWnd, IntPtr lParam)
 {
 Window temp = CreateWindow(hWnd);
 if (IsAltTabWindow(hWnd) || hiddenGroup.hasWindow(temp))
 {
 SendMessage(hWnd, WM_CLOSE, IntPtr.Zero, IntPtr.Zero);
 hiddenGroup.RemoveWindow(temp);
 }

 return true;
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 105

 private bool KillAll(IntPtr hWnd, IntPtr lParam)
 {
 Window temp = CreateWindow(hWnd);
 if (IsAltTabWindow(hWnd) || hiddenGroup.hasWindow(temp))
 {
 int processID;
 GetWindowThreadProcessId(hWnd, out processID);
 hiddenGroup.RemoveWindow(temp);
 Process.GetProcessById(processID).Kill();
 }
 return true;
 }

 private void CloseCat(int index)
 {
 if (windowGroups[index] != null)
 {
 this.WindowState = FormWindowState.Minimized;
 for (int i = 0; i < windowGroups[index].numberofWindows(); i++)
 {
 Window temp = CreateWindow(windowGroups[index].GetHandleAt(i));
 SendMessage(temp.Handle, WM_CLOSE, IntPtr.Zero, IntPtr.Zero);
 hiddenGroup.RemoveWindow(temp);
 }
 }
 RefreshTable(catIndex);
 }

 private void KillCat(int index)
 {
 if (windowGroups[index] != null)
 {
 for (int i = 0; i < windowGroups[index].numberofWindows(); i++)
 {
 Window temp = CreateWindow(windowGroups[index].GetHandleAt(i));
 int processID;
 GetWindowThreadProcessId(temp.Handle, out processID);
 hiddenGroup.RemoveWindow(temp);
 Process.GetProcessById(processID).Kill();
 }
 }
 RefreshTable(catIndex);
 }

 private bool ShowAll(IntPtr hWnd, IntPtr lParam)
 {
 Window temp = CreateWindow(hWnd);
 if (IsAltTabWindow(hWnd) || hiddenGroup.hasWindow(temp)) {
 hiddenGroup.RemoveWindow(temp);
 ShowWindow(hWnd, SW_RESTORE);
 ShowWindow(hWnd, SW_SHOW);
 }
 return true;
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 106

 private void ShowCat(int index)
 {
 if (windowGroups[index] != null)
 {
 this.WindowState = FormWindowState.Minimized;
 for (int i = 0; i < windowGroups[index].numberofWindows(); i++)
 {
 Window temp = CreateWindow(windowGroups[index].GetHandleAt(i));
 hiddenGroup.RemoveWindow(temp);
 ShowWindow(temp.Handle, SW_RESTORE);
 ShowWindow(temp.Handle, SW_SHOW);
 }
 }
 }

 private bool HideAll(IntPtr hWnd, IntPtr lParam)
 {
 if (IsAltTabWindow(hWnd))
 {
 hiddenGroup.AddWindow(CreateWindow(hWnd));
 ShowWindow(hWnd, SW_HIDE);
 }
 return true;
 }

 private void HideCat(int index)
 {
 if (windowGroups[index] != null)
 {
 for (int i = 0; i < windowGroups[index].numberofWindows(); i++)
 {
 Window temp = CreateWindow(windowGroups[index].GetHandleAt(i));
 hiddenGroup.AddWindow(temp);
 ShowWindow(temp.Handle, SW_HIDE);
 }
 }
 }

 private Window CreateWindow(IntPtr hWnd)
 {
 int size = GetWindowTextLength(hWnd) + 1;
 StringBuilder sb = new StringBuilder(size);
 GetWindowText(hWnd, sb, size);
 RECT windowRect = new RECT();
 GetWindowRect(hWnd, ref windowRect);

 Window window = new Window(hWnd, sb.ToString(), windowRect.X, windowRect.Y,
windowRect.Width, windowRect.Height);
 return window;
 }

 private bool RearrangeWindow(IntPtr hWnd, IntPtr lParam)
 {
 // THIS FUNCTION IS FOR ARRANGING WINDOWS AND ADDING CATEGORIES

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 107

 if (IsAltTabWindow(hWnd))
 {
 Window currentWindow = CreateWindow(hWnd);
 bool alreadyExists = false;

 // Check if window already exists in any category.
 for (int i = 0; i < windowGroups.Length; i++)
 {
 if (windowGroups[i] == null)
 {
 continue;
 }
 else
 {
 if (windowGroups[i].hasWindow(currentWindow))
 {
 alreadyExists = true;
 }
 }
 }

 if (!alreadyExists)
 {
 // CHECK IF FULL
 while (windowGroups[currentcIndex] != null)
 {
 if (windowGroups[currentcIndex].isFull())
 {
 currentcIndex++;
 }
 else
 {
 break;
 }
 }

 // If the current category is NULL, make this window the main window
in the new category.
 if (windowGroups[currentcIndex] == null)
 {
 NewCategory(currentcIndex, currentWindow);
 }
 else
 {
 if (windowGroups[currentcIndex].MainWindow == null ||
windowGroups[currentcIndex].isEmpty())
 {
 // No main window! Assign this window as main window.
 windowGroups[currentcIndex].MainWindow = currentWindow;
 }
 }

 // Add current window to current category.
 windowGroups[currentcIndex].AddWindow(currentWindow);
 RearrangeCategory(currentcIndex);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 108

 // If current category is full, move on to the next.
 if (windowGroups[currentcIndex].isFull())
 {
 currentcIndex++;
 }
 }
 }

 return true;
 }

 private void RearrangeCategory(int index)
 {
 if (windowGroups[index] == null) { return; }
 UpdateCategories();
 int x = screenWidth / 2;
 int y = 0;
 int number = windowGroups[index].numberofWindows();

 switch (number)
 {
 case 1:
 // set to cover the whole screen
 SetWindowPos(windowGroups[index].GetHandleAt(0), IntPtr.Zero, 0, 0,
screenWidth, screenHeight, SWP_NOZORDER);
 break;
 case 2:
 for (int i = 0; i < number; i++)
 {
 // dock to both halves of screen
 IntPtr currentHandle = windowGroups[index].GetHandleAt(i);
 if (currentHandle == windowGroups[index].MainWindow.Handle)
 {
 SetWindowPos(currentHandle, IntPtr.Zero, 0, 0, x,
screenHeight, SWP_NOZORDER);
 }
 else
 {
 SetWindowPos(currentHandle, IntPtr.Zero, x, y, x,
screenHeight, SWP_NOZORDER);
 }
 }
 break;
 case 3:
 for (int i = 0; i < number; i++)
 {
 // Dock 1 window left full height, 2 windows right with equally
divided heights
 IntPtr currentHandle = windowGroups[index].GetHandleAt(i);
 if (currentHandle == windowGroups[index].MainWindow.Handle)
 {
 SetWindowPos(currentHandle, IntPtr.Zero, 0, 0, screenWidth /
2, screenHeight, SWP_NOZORDER);
 }
 else
 {

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 109

 SetWindowPos(currentHandle, IntPtr.Zero, x, y, x,
screenHeight / 2, SWP_NOZORDER);
 y += screenHeight / 2;
 }
 }
 break;
 case 4:
 // ==MAIN + 23:77 LAYOUT START== //
 for (int i = 0; i < number; i++)
 {
 IntPtr currentHandle = windowGroups[index].GetHandleAt(i);
 if (currentHandle == windowGroups[index].MainWindow.Handle)
 {
 SetWindowPos(currentHandle, IntPtr.Zero, 0, 0, screenWidth /
2, screenHeight, SWP_NOZORDER);
 }
 else if (y * 2 > screenHeight - y)
 {
 SetWindowPos(currentHandle, IntPtr.Zero, x, y, x,
screenHeight - y, SWP_NOZORDER);
 }
 else
 {
 // Plenty of space, continue to place windows in 23:77 ratio.
 double tempY = (((double)23 / (double)77) * x);
 int newY = (int)Math.Ceiling(tempY);
 SetWindowPos(currentHandle, IntPtr.Zero, x, y, x, newY,
SWP_NOZORDER);
 y = y + newY;
 }
 }
 // ==MAIN + 23:77 LAYOUT END== //

 /*
 // ==GOLDEN SECTION LAYOUT START== //
 // FOR TESTING AND CONTROL PURPOSES ONLY, DOES NOT FULLY WORK WITH
OTHER FUNCTIONS //
 double goldenRatio = ((double)1 + (double)Math.Sqrt(5)) / 2;
 // Height of screen = 1
 // Width of screen = Golden Ratio
 int a = (int)Math.Ceiling((double)screenWidth * (goldenRatio - 1));
 int b = screenWidth - a;
 int c = (int)Math.Ceiling((double)screenHeight * (goldenRatio - 1));
 int d = screenHeight - c;
 int e = (int)Math.Ceiling((double)b * (goldenRatio - 1));
 for (int i = 0; i < number; i++)
 {
 IntPtr currentHandle = windowGroups[index].GetHandleAt(i);
 switch (i)
 {
 case 0:
 // 1st window
 SetWindowPos(currentHandle, IntPtr.Zero, 0, 0, a,
screenHeight, SWP_NOZORDER);
 break;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 110

 case 1:
 // 2nd window
 SetWindowPos(currentHandle, IntPtr.Zero, a, 0, b, c,
SWP_NOZORDER);
 break;
 case 2:
 // 3rd window
 SetWindowPos(currentHandle, IntPtr.Zero, a + b - e, c, e,
d, SWP_NOZORDER);
 break;
 case 3:
 // 4th window
 SetWindowPos(currentHandle, IntPtr.Zero, a, c, b - e, d,
SWP_NOZORDER);
 break;
 }
 }
 // ==GOLDEN SECTION LAYOUT END== //
 */

 break;
 default:
 break;
 }

 }

 private void MoveActiveWindow(int direction)
 {
 // DIRECTION
 // 0 - Bottom
 // 1 - Right
 // 2 - Top
 // 3 - Left

 Window activeWindow = CreateWindow(GetForegroundWindow());
 if (IsAltTabWindow(activeWindow.Handle))
 {
 int movement = 50;
 switch (direction)
 {
 case 0:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos,
activeWindow.yPos + movement, 0, 0, SWP_NOSIZE);
 break;
 case 1:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos
+ movement, activeWindow.yPos, 0, 0, SWP_NOSIZE);
 break;
 case 2:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos,
activeWindow.yPos - movement, 0, 0, SWP_NOSIZE);
 break;
 case 3:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos
- movement, activeWindow.yPos, 0, 0, SWP_NOSIZE);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 111

 break;
 default:
 // Do nothing.
 break;
 }
 }

 }

 private void ResizeActiveWindow(int x)
 {
 Window activeWindow = CreateWindow(GetForegroundWindow());
 if (IsAltTabWindow(activeWindow.Handle))
 {
 int movement = 50;
 switch (x)
 {
 case 0:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos,
activeWindow.yPos, activeWindow.Width + movement, activeWindow.Height + movement,
SWP_NOZORDER);
 break;
 case 1:
 SetWindowPos(activeWindow.Handle, IntPtr.Zero, activeWindow.xPos,
activeWindow.yPos, activeWindow.Width - movement, activeWindow.Height - movement,
SWP_NOZORDER);
 break;
 default:
 // Do nothing.
 break;
 }
 }
 }

 private void AddtoGroup(Window window, int categoryIndex)
 {
 if (IsAltTabWindow(window.Handle))
 {
 UpdateCategories();
 if (windowGroups[categoryIndex] == null)
 {
 NewCategory(categoryIndex, window);
 }

 if (windowGroups[categoryIndex].isEmpty())
 {
 windowGroups[categoryIndex].MainWindow = window;
 }

 if (windowGroups[categoryIndex].AddWindow(window))
 {
 // Remove from previous category, if exists.
 for (int i = 0; i < windowGroups.Length; i++)
 {
 if (windowGroups[i] == null || i == categoryIndex)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 112

 {
 continue;
 }
 else
 {
 if (windowGroups[i].hasWindow(window))
 {
 windowGroups[i].RemoveWindow(window);
 }
 }
 }

 UpdateCategories();
 notifyIcon.ShowBalloonTip(2000, "Added window to category!", "'" +
window.Title + "' has been added to " + windowGroups[categoryIndex].CategoryName,
ToolTipIcon.None);
 return;
 }
 else
 {
 MessageBox.Show(new Form() { TopMost = true }, "Category is full or
window already exists.", "Unable to Add Window", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
 return;
 }

 }
 else
 {
 MessageBox.Show(new Form() { TopMost = true }, "Select a valid active
window to be added to the category!", "Error: No Window Selected", MessageBoxButtons.OK,
MessageBoxIcon.Error);
 }
 }

 private void NewCategory(int index, Window main)
 {
 windowGroups[index] = new Category("Category #" + (index + 1), main,
LAYOUT_LIMIT);
 windowGroups[index].MainWindow = main;

 // Create CATEGORY button
 Button catButton = new Button();
 catButton.Text = windowGroups[index].CategoryName;
 catButton.Name = "btnCategory" + index;
 catButton.Width = 105;
 catButton.Height = 45;
 catButton.Font = new Font("Century Gothic", 10.0f, FontStyle.Bold);
 catButton.UseVisualStyleBackColor = true;
 catButton.Click += btnCategory_Click;
 toolTips.SetToolTip(catButton, "List all windows in this category.");

 // Create panel for category controls
 TableLayoutPanel catControl = new TableLayoutPanel();
 catControl.Name = "catControl" + index;
 catControl.AutoSize = true;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 113

 catControl.GrowStyle = TableLayoutPanelGrowStyle.AddRows;
 catControl.Width = 25;
 catControl.Height = 45;
 catControl.Margin = Padding.Empty;

 // Rename button for category controls
 Button renameButton = new Button();
 renameButton.Name = "btnRenameCat" + index;
 renameButton.Image = WindowsFormsApplication1.Properties.Resources.smalledit;
 renameButton.ImageAlign = ContentAlignment.MiddleCenter;
 renameButton.Width = 22;
 renameButton.Height = 22;
 renameButton.UseVisualStyleBackColor = true;
 renameButton.Margin = new Padding(0, 3, 0, 0);
 renameButton.Click += btnRenameCat_Click;
 toolTips.SetToolTip(renameButton, "Rename this category.");

 // Delete category button for category controls
 Button catDelButton = new Button();
 catDelButton.Name = "btnDeleteCat" + index;
 catDelButton.Image =
WindowsFormsApplication1.Properties.Resources.smalldelete;
 catDelButton.ImageAlign = ContentAlignment.MiddleCenter;
 catDelButton.Width = 22;
 catDelButton.Height = 22;
 catDelButton.UseVisualStyleBackColor = true;
 catDelButton.Margin = Padding.Empty;
 catDelButton.Click += btnDelCat_Click;
 toolTips.SetToolTip(catDelButton, "Delete this category.");

 // Add the controls in their respective places
 panelCategory.Controls.Add(catButton);
 panelCategory.Controls.SetChildIndex(catButton, (2 * index) + 3);
 catControl.Controls.Add(renameButton);
 catControl.Controls.Add(catDelButton);
 panelCategory.Controls.Add(catControl);
 panelCategory.Controls.SetChildIndex(catControl,
panelCategory.Controls.GetChildIndex(catButton) + 1);
 }

 private void UpdateCategories()
 {
 // Loop through all categories.
 for (int i = 0; i < windowGroups.Length; i++)
 {
 if (windowGroups[i] != null)
 {
 int counter = 0;
 int limit = windowGroups[i].numberofWindows();
 while (counter < limit)
 {
 Window currentWindow =
CreateWindow(windowGroups[i].GetHandleAt(counter));
 // Check if the window still exists.
 if (!IsAltTabWindow(currentWindow.Handle)
&& !hiddenGroup.hasWindow(currentWindow))

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 114

 {
 windowGroups[i].RemoveAt(counter);
 limit--;
 // Everytime a window is removed, it automatically shifts the
objects up the list.
 // Don't increment counter because the next object will be
shifted to the current index.
 }
 else
 {
 counter++;
 }
 }
 }
 }
 }

 private void RefreshTable(int showIndex)
 {
 previewGrid.Controls.Clear();
 previewGrid.ColumnStyles.Clear();
 activeButtons.Clear();

 // Unregister all thumbnails
 for (int i = 0; i < preview.Length; i++)
 {
 if (preview[i] != IntPtr.Zero) { DwmUnregisterThumbnail(preview[i]); }
 }

 // Just another layer of handling for NullException. Maybe use try/catch next
time?
 if (windowGroups[showIndex] != null)
 {
 UpdateCategories();
 lblCurrentCat.Text = windowGroups[showIndex].CategoryName;
 int number = windowGroups[showIndex].numberofWindows();

 // Prepare TableLayoutPanel
 for (int i = 0; i < number; i++)
 {
 Window currentWindow =
CreateWindow(windowGroups[showIndex].GetHandleAt(i));
 FlowLayoutPanel section = new FlowLayoutPanel() { Width =
previewGrid.Width / number, Height = (previewGrid.Height - 100) };
 previewGrid.Controls.Add(section, i, 0);
 FlowLayoutPanel controls = new FlowLayoutPanel() { Width =
previewGrid.Width / number, Height = 100 };

 Button windowIcon = new Button() { Width = 48, Height = 48,
UseVisualStyleBackColor = true };
 windowIcon.Name = "btnSwitchTo" + i;
 try
 {
 windowIcon.Image = GetIcon(currentWindow.Handle).ToBitmap();

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 115

 }
 catch (Exception e)
 {
 // Null icon, simply leave it and don't assign.
 }
 windowIcon.ImageAlign = ContentAlignment.MiddleCenter;
 windowIcon.Click += windowIcon_Click;
 controls.Controls.Add(windowIcon);

 Label tempLabel = new Label();
 tempLabel.ForeColor = Color.Red;
 int blah = (previewGrid.Width / number) - 200;
 tempLabel.MaximumSize = new Size(blah, 0);
 tempLabel.AutoSize = true;
 tempLabel.Text = currentWindow.Title;
 tempLabel.Margin = new Padding(0, 10, 0, 0);
 controls.Controls.Add(tempLabel);

 RadioButton makeActive = new RadioButton() { Width = 42, Height = 42,
UseVisualStyleBackColor = true };
 makeActive.Appearance = Appearance.Button;
 makeActive.Name = "btnMakeActive" + i;
 makeActive.Image =
WindowsFormsApplication1.Properties.Resources.blackactive;
 makeActive.ImageAlign = ContentAlignment.MiddleCenter;
 if (windowGroups[catIndex].GetHandleAt(i) ==
windowGroups[catIndex].MainWindow.Handle) { makeActive.Checked = true; }
 makeActive.Click += btnMakeActive_Click;
 activeButtons.Add(makeActive);
 controls.Controls.Add(makeActive);

 Button closeThis = new Button() { Width = 42, Height = 42,
UseVisualStyleBackColor = true };
 closeThis.Name = "btnCloseThis" + i;
 closeThis.Image =
WindowsFormsApplication1.Properties.Resources.blackcross;
 closeThis.ImageAlign = ContentAlignment.MiddleCenter;
 closeThis.Click += btnCloseThis_Click;
 controls.Controls.Add(closeThis);

 Button killThis = new Button() { Width = 42, Height = 42,
UseVisualStyleBackColor = true };
 killThis.Name = "btnKillThis" + i;
 killThis.Image =
WindowsFormsApplication1.Properties.Resources.blackskull;
 killThis.ImageAlign = ContentAlignment.MiddleCenter;
 killThis.Click += btnKillThis_Click;
 controls.Controls.Add(killThis);

 previewGrid.Controls.Add(controls, i, 1);
 }

 for (int i = 0; i < number; i++)
 {
 // Credits to Bart De Smet for a wonderful tutorial on DWM API and
window previews.

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 116

 // Codes from some parts of the tutorial were taken and modified
 // to suit this application's purposes.

 // De Smet, B. (2006). Programming the Windows Vista DWM in C#.
[online] B# .NET Blog.
 // Available at:
http://bartdesmet.net/blogs/bart/archive/2006/10/05/4495.aspx
 // [Accessed 22 Feb 2014].

 IntPtr thumb;
 DwmRegisterThumbnail(this.Handle,
windowGroups[showIndex].GetHandleAt(i), out thumb);
 preview[i] = thumb;

 DWM_THUMBNAIL_PROPERTIES props = new DWM_THUMBNAIL_PROPERTIES();
 props.dwFlags = DWM_TNP_VISIBLE | DWM_TNP_RECTDESTINATION |
DWM_TNP_OPACITY;

 props.fVisible = true;
 props.opacity = 255;

 Control control = previewGrid.GetControlFromPosition(i, 0);
 // Set position of the window snapshot, with an offset based on the
table's position.
 props.rcDestination = new RECT(control.Left + previewGrid.Location.X,
control.Top + previewGrid.Location.Y, control.Right, control.Bottom);

 DwmUpdateThumbnailProperties(preview[i], ref props);
 }

 }

 }

 protected override void WndProc(ref Message m)
 {
 // Handles all the hotkeys
 if (m.Msg == HotkeyConstants.WM_HOTKEY_MSG_ID)
 {
 Keys key = (Keys)(((int)m.LParam >> 16) & 0xFFFF);
 int modifier = (int)m.LParam & 0xFFFF;
 if (modifier == arrangeKey.modifier && key == arrangeKey.key)
 {
 AutoArrange();
 }
 else if ((modifier == restoreKey.modifier) && key == restoreKey.key)
 {
 if (this.WindowState == FormWindowState.Maximized)
 {
 this.WindowState = FormWindowState.Minimized;
 }
 else
 {
 Restore();

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 117

 }
 }
 else if ((modifier == closeKey.modifier) && key == closeKey.key)
 {
 DialogResult result = MessageBox.Show("Are you sure you want to close
ALL windows?", "Confirmation", MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 this.WindowState = FormWindowState.Minimized;
 CloseAllWindows();
 }
 }
 else if ((modifier == killKey.modifier) && key == killKey.key)
 {
 DialogResult result = MessageBox.Show("Are you sure you want to kill
ALL processes? Unsaved progress will be lost.", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 this.WindowState = FormWindowState.Minimized;
 KillAllWindows();
 }
 }
 else if ((modifier == moveUpKey.modifier) && key == moveUpKey.key)
 {
 MoveActiveWindow(2);
 }
 else if ((modifier == moveRightKey.modifier) && key == moveRightKey.key)
 {
 MoveActiveWindow(1);
 }
 else if ((modifier == moveDownKey.modifier) && key == moveDownKey.key)
 {
 MoveActiveWindow(0);
 }
 else if ((modifier == moveLeftKey.modifier) && key == moveLeftKey.key)
 {
 MoveActiveWindow(3);
 }
 else if ((modifier == sizeUpKey.modifier) && key == sizeUpKey.key)
 {
 ResizeActiveWindow(0);
 }
 else if ((modifier == sizeDownKey.modifier) && key == sizeDownKey.key)
 {
 ResizeActiveWindow(1);
 }
 else if ((modifier == showKey.modifier) && key == showKey.key)
 {
 ShowAllWindows();
 }
 else if ((modifier == hideKey.modifier) && key == hideKey.key)
 {
 HideAllWindows();
 }
 else if ((modifier == swapMainKey.modifier) && key == swapMainKey.key)

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 118

 {
 Window newMain = CreateWindow(GetForegroundWindow());
 bool alreadyExists = false;
 int index = 0;

 // Check if window already exists in any category.
 for (int i = 0; i < windowGroups.Length; i++)
 {
 if (windowGroups[i] == null)
 {
 continue;
 }
 else
 {
 if (windowGroups[i].hasWindow(newMain))
 {
 alreadyExists = true;
 index = i;
 }
 }
 }
 if (alreadyExists)
 {
 windowGroups[index].MainWindow = newMain;
 RearrangeCategory(catIndex);
 }
 else { MessageBox.Show(new Form() { TopMost = true }, "The selected
window does not exist in any category!"); }

 }
 else if ((modifier == autoDockKey.modifier) && key == autoDockKey.key)
 {
 if (autoDock)
 {
 // Switch off auto-dock.
 autoDock = false;
 dockUp.Unregister();
 dockDown.Unregister();
 dockLeft.Unregister();
 dockRight.Unregister();
 dockAltUp.Unregister();
 dockAltDown.Unregister();
 dockAltLeft.Unregister();
 dockAltRight.Unregister();
 adWindows[0].Clear();
 adWindows[1].Clear();
 adWindows[2].Clear();
 lblADStatus.Text = "Off";
 lblADStatus.ForeColor = Color.Red;
 notifyIcon.ShowBalloonTip(2000, "Autodock is OFF!", "To turn this
on again, press Ctrl + Shift + Tab.", ToolTipIcon.None);
 }
 else
 {
 // Switch on auto-dock.
 autoDock = true;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 119

 adWindows[0] = new Category("Left", 8);
 adWindows[1] = new Category("Middle", 8);
 adWindows[2] = new Category("Right", 8);
 dockUp.Register();
 dockDown.Register();
 dockLeft.Register();
 dockRight.Register();
 dockAltUp.Register();
 dockAltDown.Register();
 dockAltLeft.Register();
 dockAltRight.Register();
 lblADStatus.Text = "On";
 lblADStatus.ForeColor = Color.Green;
 notifyIcon.ShowBalloonTip(2000, "Autodock is ON!", "Arrow keys
now dock windows to the screen. To turn this off, press Ctrl + Shift + Tab.",
ToolTipIcon.None);
 }
 }

 // Auto-dock processing.
 if (autoDock)
 {
 if ((modifier == dockUp.modifier && key == dockUp.key) ||
 (modifier == dockDown.modifier && key == dockDown.key) ||
 (modifier == dockLeft.modifier && key == dockLeft.key) ||
 (modifier == dockRight.modifier && key == dockRight.key) ||
 (modifier == dockAltUp.modifier && key == dockAltUp.key) ||
 (modifier == dockAltDown.modifier && key == dockAltDown.key) ||
 (modifier == dockAltLeft.modifier && key == dockAltLeft.key) ||
 (modifier == dockAltRight.modifier && key == dockAltRight.key))
 {
 int col = 1;
 if (key == dockLeft.key)
 {
 col = 0;
 }
 else if (key == dockRight.key)
 {
 col = 2;
 }

 Window activeWindow = CreateWindow(GetForegroundWindow());
 if (IsAltTabWindow(activeWindow.Handle))
 {
 for (int i = 0; i < 3; i++)
 {
 // If this window already exists in any column, remove it.
 if (adWindows[i].hasWindow(activeWindow))
{ adWindows[i].RemoveWindow(activeWindow); }
 // Remove non-existent windows from columns.
 for (int j = 0; j < adWindows[i].numberofWindows(); j++)
 {
 if (!IsAltTabWindow(adWindows[i].GetHandleAt(j)))
{ adWindows[i].RemoveWindow(adWindows[i].GetWindowAt(j)); }
 }
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 120

 // Add the window to the column.
 if (key == dockUp.key)
{ adWindows[col].AddtoFirst(activeWindow); }
 else { adWindows[col].AddWindow(activeWindow); }

 int xmod = 2;
 if (!adWindows[1].isEmpty()) { xmod = 3; }

 // Update all columns.
 for (int i = 0; i < 3; i++)
 {
 int number = adWindows[i].numberofWindows();
 for (int j = 0; j < number; j++)
 {
 int x = i;
 if (xmod == 2 && i == 2) { x = i - 1; }
 ShowWindow(adWindows[i].GetHandleAt(j), SW_RESTORE);
 SetWindowPos(adWindows[i].GetHandleAt(j), IntPtr.Zero,
(screenWidth / xmod) * x, (screenHeight / number) * j, screenWidth / xmod, screenHeight /
number, SWP_NOZORDER);
 }
 }

 if (modifier == dockAltUp.modifier || modifier ==
dockAltDown.modifier || modifier == dockAltLeft.modifier || modifier ==
dockAltRight.modifier)
 {
 // SWITCH TO NEXT WINDOW //
 EnumWindows(new EnumWindowsProc(ZOrderAdd), IntPtr.Zero);
 bool isLastWindow = false;
 IntPtr storedHandle = activeWindow.Handle;
 IntPtr tempHandle = storedHandle;
 int counter = 0;

 // Loop up the Z-Order.
 while (!isLastWindow)
 {
 IntPtr nextHandle = GetWindow(tempHandle,
GetWindow_Cmd.GW_HWNDPREV);

 // Is that a window in the group?
 if (tempGroup.hasWindow(CreateWindow(nextHandle)))
 {
 // Yes? Then switch to that window and continue,
add to counter.
 counter++;
 tempHandle = nextHandle;
 }
 else
 {
 // No? Then check if it is the top of the Z-Order.
 if (nextHandle == null || nextHandle ==
IntPtr.Zero)
 {

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 121

 // If it is the end, then check if it is
equal to the number of windows we have minus one.
 if (counter == (tempGroup.numberofWindows() -
1))
 {
 // If it is equal, it means all other
windows are on top of this window, so this is the lowest of the group.
 SetForegroundWindow(storedHandle);
 isLastWindow = true;
 }
 else
 {
 // If it is not equal, means there is
still a window below. Loop down the Z-Order until a valid window is found.
 IntPtr switcher = GetWindow(storedHandle,
GetWindow_Cmd.GW_HWNDNEXT);
 while
(!tempGroup.hasWindow(CreateWindow(switcher)))
 {
 switcher = GetWindow(switcher,
GetWindow_Cmd.GW_HWNDNEXT);
 }
 // Loop exits when found a valid window.
Now switch and start over.
 storedHandle = switcher;
 tempHandle = storedHandle;
 counter = 0;
 }

 }
 else
 {
 // Not the top of the Z-Order, switch and
continue, do not add to counter.
 tempHandle = nextHandle;
 }
 }
 }
 // Clear the temporary group.
 tempGroup.Clear();
 }
 }
 }
 }

 // Loop through category-based Hotkeys
 for (int i = 0; i < CATEGORY_LIMIT; i++)
 {
 if (modifier == addCat[i].modifier && key == addCat[i].key)
 {
 Window activeWindow = CreateWindow(GetForegroundWindow());
 AddtoGroup(activeWindow, i);
 break;
 }
 if (modifier == arrange[i].modifier && key == arrange[i].key)
 {

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 122

 RearrangeCategory(i);
 break;
 }
 if (modifier == show[i].modifier && key == show[i].key)
 {
 ShowCat(i);
 break;
 }
 if (modifier == hide[i].modifier && key == hide[i].key)
 {
 HideCat(i);
 break;
 }
 if (modifier == close[i].modifier && key == close[i].key)
 {
 if (windowGroups[i] == null) { return; }
 if (windowGroups[i].isEmpty()) { return; }
 DialogResult result = MessageBox.Show("Are you sure you want to
close windows under '" + windowGroups[i].CategoryName + "'?", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 CloseCat(i);
 }
 break;
 }
 if (modifier == kill[i].modifier && key == kill[i].key)
 {
 if (windowGroups[i] == null) { return; }
 if (windowGroups[i].isEmpty()) { return; }
 DialogResult result = MessageBox.Show("Are you sure you want to
kill processes under '" + windowGroups[i].CategoryName + "'?", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 KillCat(i);
 }
 break;
 }
 }
 }
 base.WndProc(ref m);
 }

 private void btnClose_Click(object sender, EventArgs e)
 {
 this.WindowState = FormWindowState.Minimized;
 }

 private void btnCategory_Click(object sender, EventArgs e)
 {
 Button someButton = sender as Button;
 String s = someButton.Name;
 int groupIndex = (int)Char.GetNumericValue(s[11]);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 123

 catIndex = groupIndex;
 RefreshTable(groupIndex);
 }

 private void btnDelCat_Click(object sender, EventArgs e)
 {
 Button someButton = sender as Button;
 String s = someButton.Name;
 int groupIndex = (int)Char.GetNumericValue(s[12]);

 windowGroups[groupIndex] = null;

 foreach (Control item in panelCategory.Controls.OfType<TableLayoutPanel>())
 {
 if (item.Name == ("catControl" + groupIndex))
 panelCategory.Controls.Remove(item);
 }

 foreach (Control item in panelCategory.Controls.OfType<Button>())
 {
 if (item.Name == ("btnCategory" + groupIndex))
 panelCategory.Controls.Remove(item);
 }

 }

 private void btnRenameCat_Click(object sender, EventArgs e)
 {
 Button someButton = sender as Button;
 String s = someButton.Name;
 int groupIndex = (int)Char.GetNumericValue(s[12]);

 foreach (Control item in panelCategory.Controls.OfType<Button>())
 {
 if (item.Name == ("btnCategory" + groupIndex))
 {
 TextBox renamer = new TextBox();
 renamer.Name = "txtRenamer" + groupIndex;
 renamer.Width = 130;
 renamer.Text = item.Text;
 renamer.MaxLength = 20;
 renamer.KeyUp += Rename_KeyUp;
 renamer.LostFocus += Rename_LostFocus;
 panelCategory.Controls.Add(renamer);
 panelCategory.Controls.SetChildIndex(renamer,
panelCategory.Controls.GetChildIndex(item) + 2);
 toolTips.SetToolTip(renamer, "Enter the name for this category.");
 renamer.Focus();
 }

 }
 }

 private void Rename_KeyUp(object sender, KeyEventArgs e)
 {
 TextBox renamer = sender as TextBox;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 124

 String s = renamer.Name;
 int groupIndex = (int)Char.GetNumericValue(s[10]);
 if (e.KeyCode == Keys.Enter)
 {
 foreach (Control item in panelCategory.Controls.OfType<Button>())
 {
 if (item.Name == ("btnCategory" + groupIndex))
 {
 item.Text = renamer.Text;
 windowGroups[groupIndex].CategoryName = renamer.Text;
 }
 }
 if (catIndex == groupIndex) { lblCurrentCat.Text =
windowGroups[catIndex].CategoryName; }
 panelCategory.Controls.Remove(renamer);
 e.Handled = true;
 }
 }

 private void Rename_LostFocus(object sender, EventArgs e)
 {
 TextBox renamer = sender as TextBox;
 panelCategory.Controls.Remove(renamer);
 }

 private void btnAutoArrange_Click(object sender, EventArgs e)
 {
 AutoArrange();
 }

 private void btnArrangeCat_Click(object sender, EventArgs e)
 {
 RearrangeCategory(catIndex);
 }

 private void btnCloseCat_Click(object sender, EventArgs e)
 {
 if (windowGroups[catIndex] == null) { return; }
 if (windowGroups[catIndex].isEmpty()) { return; }
 DialogResult result = MessageBox.Show("Are you sure you want to close windows
under '" + windowGroups[catIndex].CategoryName + "'?", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 CloseCat(catIndex);
 }

 }

 private void btnCloseThis_Click(object sender, EventArgs e)
 {
 Button button = sender as Button;
 String s = button.Name;
 int groupIndex = (int)Char.GetNumericValue(s[12]);
 Window closingWindow =
CreateWindow(windowGroups[catIndex].GetHandleAt(groupIndex));

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 125

 DialogResult result = MessageBox.Show("Are you sure you want to close '" +
closingWindow.Title + "'?", "Confirmation", MessageBoxButtons.OKCancel,
MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 SendMessage(closingWindow.Handle, WM_CLOSE, IntPtr.Zero, IntPtr.Zero);
 RefreshTable(catIndex);
 }

 }

 private void btnKillThis_Click(object sender, EventArgs e)
 {
 Button button = sender as Button;
 String s = button.Name;
 int groupIndex = (int)Char.GetNumericValue(s[11]);
 Window killingWindow =
CreateWindow(windowGroups[catIndex].GetHandleAt(groupIndex));
 DialogResult result = MessageBox.Show("Are you sure you want to terminate '"
+ killingWindow.Title + "'? Unsaved progress will be lost.", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 int processID;
 GetWindowThreadProcessId(killingWindow.Handle, out processID);
 Process.GetProcessById(processID).Kill();
 RefreshTable(catIndex);
 }
 }

 private void btnKillCat_Click(object sender, EventArgs e)
 {
 if (windowGroups[catIndex] == null) { return; }
 if (windowGroups[catIndex].isEmpty()) { return; }
 DialogResult result = MessageBox.Show("Are you sure you want to kill
processes under '" + windowGroups[catIndex].CategoryName + "'?", "Confirmation",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation);
 if (result == DialogResult.OK)
 {
 KillCat(catIndex);
 }
 }

 private void btnMakeActive_Click(object sender, EventArgs e)
 {
 RadioButton button = sender as RadioButton;
 String s = button.Name;
 int groupIndex = (int)Char.GetNumericValue(s[13]);

 if (button.Checked)
 {
 foreach (RadioButton r in activeButtons)
 {
 if (r == button)
 {
 continue;

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 126

 }
 r.Checked = false;
 }

 Window newMain =
CreateWindow(windowGroups[catIndex].GetHandleAt(groupIndex));
 windowGroups[catIndex].MainWindow = newMain;
 RearrangeCategory(catIndex);
 }
 }

 private void windowIcon_Click(object sender, EventArgs e)
 {
 Button someButton = sender as Button;
 String s = someButton.Name;
 int groupIndex = (int)Char.GetNumericValue(s[11]);
 this.WindowState = FormWindowState.Minimized;
 IntPtr targetHandle = windowGroups[catIndex].GetHandleAt(groupIndex);
 ShowWindow(targetHandle, SW_RESTORE);
 SetForegroundWindow(targetHandle);
 ShowWindow(targetHandle, SW_MAXIMIZE);
 }

 public Icon GetIcon(IntPtr hwnd)
 {
 // Credits to Jani Hartikainen for ready-made source code on obtaining window
icons.
 // It covers every possible method to obtain every possible icon. It is the
best solution,
 // I don't think I can even adapt or improve it.

 // Hartikainen, J. (2007). Find an application’s icon with WinAPI. [online]
CodeUtopia.
 // Available at: http://codeutopia.net/blog/2007/12/18/find-an-applications-
icon-with-winapi/
 // [Accessed 22 Feb 2014].

 IntPtr iconHandle = SendMessage(hwnd, WM_GETICON, ICON_SMALL2, 0);
 if (iconHandle == IntPtr.Zero)
 iconHandle = SendMessage(hwnd, WM_GETICON, ICON_SMALL, 0);
 if (iconHandle == IntPtr.Zero)
 iconHandle = SendMessage(hwnd, WM_GETICON, ICON_BIG, 0);
 if (iconHandle == IntPtr.Zero)
 iconHandle = GetClassLongPtr(hwnd, GCL_HICON);
 if (iconHandle == IntPtr.Zero)
 iconHandle = GetClassLongPtr(hwnd, GCL_HICONSM);

 if (iconHandle == IntPtr.Zero)
 return null;

 Icon icn = Icon.FromHandle(iconHandle);

 return icn;
 }

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 127

 private void btnSettings_Click(object sender, EventArgs e)
 {
 settingsForm.Hide();
 settingsForm.Show();
 }

 private void settingsToolStripMenuItem_Click(object sender, EventArgs e)
 {
 settingsForm.Hide();
 settingsForm.Show();
 }

 private void btnVisible_Click(object sender, EventArgs e)
 {
 if (windowGroups[catIndex] == null) { return; }
 if (windowGroups[catIndex].isEmpty()) { return; }
 ShowCat(catIndex);
 }

 private void btnHidden_Click(object sender, EventArgs e)
 {
 if (windowGroups[catIndex] == null) { return; }
 if (windowGroups[catIndex].isEmpty()) { return; }
 HideCat(catIndex);
 }
 }
}

Form2.cs (Settings) Class

using Microsoft.Win32;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form2 : Form
 {
 // The path to the registry key where Windows looks for startup applications
(current user only)
 RegistryKey rk =
Registry.CurrentUser.OpenSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run",
true);

Nicholas W. W. H. (XXX-XXXXXXXXX) BSc. (Hons) Computing

__

__

XXXXXXX: XXXXXXXX - XXXXXXXXX: Report 128

 public Form2()
 {
 InitializeComponent();
 // Check if already running in startup
 if (rk.GetValue("Window Management Tool") != null)
 {
 // If exists, tick the checkbox.
 chkStartup.Checked = true;
 }
 }

 private void btnOK_Click(object sender, EventArgs e)
 {
 if (chkStartup.Checked)
 {
 // Add the value in the registry
 rk.SetValue("Window Management Tool",
Application.ExecutablePath.ToString());
 }
 else
 {
 // Remove the value from the registry
 rk.DeleteValue("Window Management Tool", false);
 }
 this.Hide();
 }

 private void btnCancel_Click(object sender, EventArgs e)
 {
 this.Hide();
 }

 private void Form2_FormClosing(object sender, FormClosingEventArgs e)
 {
 this.Hide();
 e.Cancel = true;
 }

 }
}

